

LANDESSTELLE FÜR BAUTECHNIK

Braustraße 2, 04107 Leipzig
Telefon: +49 341 977-3710
Telefax: +49 341 977-1199
Bearbeiter: Frank Christian Kutzer

E-Mail: frankchristian.kutzer@lds.sachsen.de

GZ: 37-2533/24/24

Prüfbericht Typenprüfung

Bericht Nr.: T25-122

vom: 5. August 2025

Gegenstand: Stahltrapezprofile der Firmenbezeichnung:

SAB 19/1050, SAB 19(KD)/1050, SAB 30KD/1050-S,

SAB 30/1100, SAB 35(R)/1035, SAB 40(R)/915, SAB 45/900, SAB 45KD/1000, SAB 45KD/1000-S, SAB 50(R)/1000,

SAB 58KD/945-S, SAB 70R/800, SAB 85R/1120,

SAB 85R/1120 P3L-B, SAB 85R/1120 P4L-B, SAB 85R/1120

(Niederaula), SAB 85R/1120 P5L (Niederaula),

SAB 89R/915, SAB 100R/825, SAB 100R/825 P3L-B,

SAB 100R/825 P4L-B, SAB 106R+/750, SAB 106R+/750 P3L-

B, SAB 106R+/750 P4L-B, SAB 110R/1000,

SAB 135R/930, SAB 135R/930 P3L-S, SAB 135R/930 P5L,

SAB 153R/840, SAB 153R/840 P3L-S, SAB 155R/840,

SAB 155R/840 P3L-S, SAB 155R/840 P5L, SAB 158R/750,

SAB 158R/750 P3L-S, SAB 160R/750, SAB 160R/750 P3L-S, SAB 160R/750 P5L, SAB 200R/750, SAB 200R/750 P3L-S,

SAB 200R/750 P4L-B, SAB 200R/750 P5L, SAB 200R/840,

SAB 200R/840 P3L-S, SAB 200R/840 P4L-B, SAB 200R/840

P5L, SAB 85R/1120, SAB 135R/930, SAB 153R/840,

SAB 155R/840, SAB 155R/840 P3L-S, SAB 155R/840 P5L

SAB 158R/750, SAB 160R/750, SAB 160R/750 P3L-S,

SAB 160R/750 P5L, SAB 200R/750, SAB 200R/840,

SAB 200R/840 P3L-S, SAB 200R/840 P4L-B,

SAB Pyramide 37/510

Antragsteller:

SAB-profiel by

Produktieweg 2

NL-3401 MG lJsselstein

Planer:

Ingenieurbüro für Leichtbau Dipl.-Ing. Christian Fauth

FREISTAAT SACHSEN

Rehbuckel 7

D-76228 Karlsruhe

Hersteller:

SAB-profiel by

Produktieweg 2

NL-3401 MG IJsselstein

und

S.A.B. Profil GmbH Industriestraße 13 D-36272 Niederaula

Geltungsdauer bis:

31. August 2030

Dieser Bericht umfasst 7 Seiten und 1 Anlage (siehe Tabelle unter Ziffer 4), die Bestandteil dieses Prüfberichtes sind.

1 Allgemeines

- 1.1 Die typengeprüften Bauvorlagen können anstelle von im Einzelfall zu prüfenden Nachweisen der Standsicherheit dem Bauantrag beigefügt werden.
- 1.2 Die Typenprüfung befreit nicht von der Verpflichtung, für jedes Bauvorhaben eine Genehmigung einzuholen, soweit gesetzliche Bestimmungen hiervon nicht befreien.
- 1.3 Die Ausführungen haben sich streng an die geprüften Pläne und an die Bestimmungen dieses Prüfberichtes zu halten. Abweichungen hiervon sind nur zulässig, wenn sie die Zustimmung im Zuge einer Einzelprüfung gefunden haben.
- 1.4 Die typengeprüften Unterlagen dürfen nur vollständig mit dem Prüfbericht und den dazugehörigen Anlagen verwendet oder veröffentlicht werden. In Zweifelsfällen sind die bei der Landesstelle für Bautechnik befindlichen geprüften Unterlagen maßgebend.
- 1.5 Die Geltungsdauer dieser Typenprüfung kann auf Antrag jeweils um bis zu fünf Jahre verlängert werden. Der nächste Sichtvermerk durch die Landesstelle für Bautechnik ist dann spätestens am 31. August 2030 erforderlich.
- 1.6 Der Prüfbericht kann in begründeten Fällen, wie z. B. Änderungen Technischer Baubestimmungen oder wenn neue technische Erkenntnisse dies erfordern, entschädigungslos geändert oder zurückgezogen werden.
- 1.7 Die baustatische Typenprüfung gilt unbeschadet der Rechte Dritter.
- 1.8 Die Typenprüfung berücksichtigt den derzeitigen Stand der Erkenntnisse. Eine Aussage über die Bewährung des Gegenstandes dieser Typenprüfung ist damit nicht verbunden.

2 Konstruktionsbeschreibung

Stahltrapezprofile der Firmenbezeichnung:

SAB 19/1050, SAB 19(KD)/1050, SAB 30KD/1050-S, SAB 30/1100, SAB 35(R)/1035, SAB 40(R)/915, SAB 45/900, SAB 45KD/1000, SAB 45KD/1000-S, SAB 50(R)/1000, SAB 58KD/945-S, SAB 70R/800, SAB 85R/1120, SAB 85R/1120 P3L-B, SAB 85R/1120 P4L-B, SAB 85R/1120 (Niederaula), SAB 85R/1120 P5L (Niederaula), SAB 89R/915, SAB 100R/825, SAB 100R/825 P3L-B, SAB 100R/825 P4L-B, SAB 106R+/750, SAB 106R+/750 P3L-B, SAB 106R+/750 P4L-B, SAB 110R/1000, SAB 135R/930, SAB 135R/930 P3L-S, SAB 135R/930 P5L, SAB 153R/840, SAB 153R/840 P3L-S, SAB 155R/840, SAB 158R/750, SAB 155R/840, SAB 155R/840 P3L-S, SAB 155R/840 P5L, SAB 160R/750 P3L-S, SAB 160R/750 P5L, SAB 200R/750, SAB 200R/750 P3L-S, SAB 200R/750 P4L-B, SAB 200R/840 P5L, SAB 200R/840 P3L-S, SAB 200R/840, SAB 155R/840 P3L-S, SAB 155R/840, SAB 155R/840 P3L-S, SAB 155R/840, SAB 155R/840 P3L-S, SAB 155R/840 P5L, SAB 155R/850 P5L, SAB 155R/85

aus Flacherzeugnissen gemäß DIN EN 10346 Tabelle 8. Die rechnerische Blechkerndicke beträgt tN - 0,04 mm.

3 Zutreffende Technische Baubestimmungen

Es gelten die bauaufsichtlich eingeführten Technischen Baubestimmungen gemäß der Verwaltungsvorschrift des Sächsischen Staatsministeriums des Innern zur Einführung Technischen Baubestimmungen (VwV TB) vom 6. Januar 2021.

Geprüfte Unterlagen 4

Formblätter (Typenblätter) zu den Profilen gemäß Tabelle:

Anlage Nr.:	Profil:	f _{y,k} [N/mm²]	Blechdicken [mm]
1.1.1-1.1.4	SAB 19/1050, SAB 19(KD)/1050	320	0,63 – 1,25
1.2.1 – 1.2.2	SAB 30KD/1050-S	320	0,63 – 1,25
1.3.1 – 1.3.4	SAB 30/1100	320	0,63 – 1,25
1.4.1 – 1.4.4	SAB 35(R)/1035	320	0,63 – 1,25
1.5.1 – 1.5.4	SAB 40(R)/915	320	0,63 – 1,25
1.6.1 – 1.6.2	SAB 45/900	320	0,63 – 1,25
1.7.1 – 1.7.2	SAB 45KD/1000	320	0,63 – 1,25
1.8.1 – 1.8.2	SAB 45KD/1000-S	320	0,63 – 1,25
1.9.1 – 1.9.4	SAB 50(R)/1000	320	0,63 – 1,25
1.10.1 – 1.10.2	SAB 58KD/945-S	320	0,63 – 1,00
1.11.1 – 1.11.4	SAB 70R/800	320	0,70 – 1,25
1.12.1 – 1.12.4	SAB 85R/1120	320	0,75 - 1,50
1.13.1 – 1.13.2	SAB 85R/1120 P3L-B	320	0,75 - 1,50
1.14.1 – 1.14.2	SAB 85R/1120 P4L-B	320	0,75 - 1,50
1.15.1 - 1.15.4	SAB 85R/1120 (Niederaula)	320	0,75 - 1,50
1.16.1 – 1.16.2	SAB 85R/1120 P5L (Niederaula)	320	0,75 - 1,50
1.17.1 – 1.17.4	SAB 89R/915	320	0,75 - 1,25
1.18.1 – 1.18.4	SAB 100R/825	320	0,75 - 1,50

Anlage Nr.:	Profil:	f _{y,k} [N/mm²]	Blechdicken [mm]
1.19.1 – 1.19.2	SAB 100R/825 P3L-B	320	0,75 - 1,25
1.20.1 – 1.20.2	SAB 100R/825 P4L-B	320	0,75 - 1,25
1.21.1 – 1.21.5	SAB 106R+/750	320	0,70 - 1,50
1.22.1 – 1.22.3	SAB 106R+/750 P3L-B	320	0,70 - 1,50
1.23.1 – 1.23.3	SAB 106R+/750 P4L-B	320	0,70 - 1,50
1.24.1 – 1.24.4	SAB 110R/1000	320	0,75 - 1,50
1.25.1 – 1.25.4	SAB 135R/930	320	0,75 - 1,50
1.26.1 – 1.26.2	SAB 135R/930 P3L-S	320	0,75 - 1,50
1.27.1 – 1.27.4	SAB 135R/930 P5L	320	0,75 - 1,50
1.28.1 – 1.28.4	SAB 153R/840	320	0,75 - 1,50
1.29.1 – 1.29.2	SAB 153R/840 P3L-S	320	0,75 - 1,50
1.30.1 – 1.30.4	SAB 155R/840	320	0,75 - 1,50
1.31.1 – 1.31.2	SAB 155R/840 P3L-S	320	0,75 - 1,50
1.32.1 – 1.32.2	SAB 155R/840 P5L	320	0,75 - 1,50
1.33.1 – 1.33.4	SAB 158R/750	320	0,75 - 1,50
1.34.1 – 1.34.2	SAB 158R/750 P3L-S	320	0,75 - 1,50
1.35.1 – 1.35.4	SAB 160R/750	320	0,75 - 1,50
1.36.1 – 1.36.2	SAB 160R/750 P3L-S	320	0,75 - 1,50
1.37.1 – 1.37.2	SAB 160R/750 P5L	320	0,75 - 1,50
1.38.1 - 1.38.4	SAB 200R/750	320	0,75 - 1,50
1.39.1 – 1.39.2	SAB 200R/750 P3L-S	320	0,75 - 1,50
1.40.1 – 1.40.2	SAB 200R/750 P4L-B	320	0,75 - 1,50
1.41.1 – 1.41.2	SAB 200R/750 P5L	320	0,75 - 1,50

Anlage Nr.:	Profil:	f _{y,k} [N/mm²]	Blechdicken [mm]
1.42.1 - 1.42.4	SAB 200R/840	320	0,75 - 1,50
1.43.1 – 1.43.2	SAB 200R/840 P3L-S	320	0,75 - 1,50
1.44.1 – 1.44.2	SAB 200R/840 P4L-B	320	0,75 - 1,50
1.45.1 – 1.45.2	SAB 200R/840 P5L	320	0,75 - 1,50
2.1.1 - 2.1.4	SAB 85R/1120 P5L (Niederaula)	350	0,75 - 1,50
2.2.1 – 2.2.4	SAB 135R/930	350	0,75 - 1,50
2.3.1 – 2.3.4	SAB 153R/840	350	0,75 - 1,50
2.4.1 – 2.4.4	SAB 155R/840	350	0,75 - 1,50
2.5.1 – 2.5.2	SAB 155R/840 P3L-S	350	0,75 - 1,50
2.6.1 – 2.6.2	SAB 155R/840 P5L	350	0,75 - 1,50
2.7.1 – 2.7.4	SAB 158R/750	350	0,75 - 1,50
2.8.1 - 2.8.4	SAB 160R/750	350	0,75 - 1,50
2.9.1 - 2.9.2	SAB 160R/750 P3L-S	350	0,75 - 1,50
2.10.1 – 2.10.2	SAB 160R/750 P5L	350	0,75 - 1,50
2.11.1 – 2.11.4	SAB 200R/750	350	0,75 - 1,50
2.12.1 – 2.12.4	SAB 200R/840	350	0,75 - 1,50
2.13.1 – 2.13.2	SAB 200R/840 P3L-S	350	0,75 - 1,50
2.14.1 – 2.14.2	SAB 200R/840 P4L-B	320	0,75 - 1,50
3.1 – 3.2	SAB Pyramid 37/510	280	0,75 - 1,50

5 Prüfergebnis

- 5.1 Die unter Ziffer 4 aufgeführten Unterlagen wurden in baustatischer Hinsicht geprüft.
- 5.2 Sonstige bauordnungsrechtliche oder andere behördliche Anforderungen waren nicht Gegenstand der Prüfung.
- 5.3 Der Gegenstand der Typenprüfung entspricht den unter Ziffer 3 aufgeführten Technischen Baubestimmungen.
- 5.4 Die Werte in den Formblättern gelten, wenn für die Blechdicken die Minustoleranzen nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)" eingehalten werden.
- 5.5 Unter Beachtung dieses Prüfberichtes und den Vorgaben nach den geprüften Unterlagen bestehen gegen eine Ausführung und Anwendung der Trapezprofile in den vorgegebenen Grenzen aus baustatischer Sicht keine Bedenken.

6 Rechtsgrundlagen

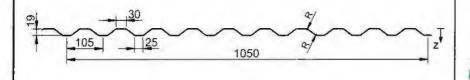
Die Landesdirektion Sachsen - Landesstelle für Bautechnik - ist gemäß § 32 DVO-SächsBO¹ Prüfamt zur Typenprüfung; zur Typenprüfung von Standsicherheitsnachweisen siehe die jeweilige Landesbauordnung und § 66 Abs. 4 Satz 3 der MBO².

Dr.-Ing. H.-A. Biegholdt

Referatsleiter

DVOSächsBO vom 2. September 2004 (SächsGVBI, S. 427), in der zum Zeitpunkt der Erstellung dieses Prüfberichtes geltenden Fassung

² Musterbauordnung, Fassung 2002, in der zum Zeitpunkt der Erstellung dieses Prüfberichtes geltenden Fassung


SAB 19/1050

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

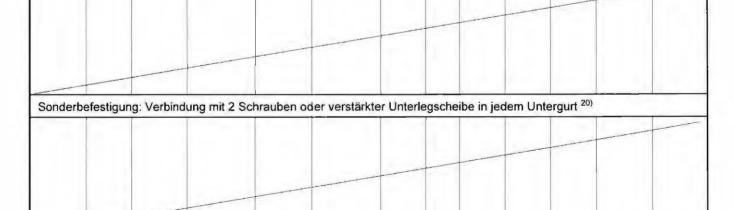
Anlage 1.1.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025 Leiter. Bearbeiter:

Nennstreckgrenze des Stahlkernes f_{y,k} = 320 N/mm²


Maßgebende Querschnittswerte

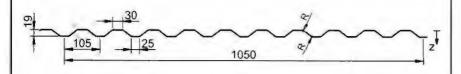
Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ng		Grenzstü	tzweiten ¹³⁾
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	9	I ⁺ eff	I- eff	A _g	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	4/m	cm²/m	cr	n	cm²/m	cr	n		m
0,63	0,060	3,42	3,54	6,14	0,76	0,91	4,48	0,81	0,94	1	
0,75	0,071	4,57	4,57	7,93	0,76	0,91	6,91	0,79	0,93	1	/
0,88	0,083	5,41	5,41	9,38	0,76	0,91	8,94	0,77	0,92	1	/
1,00	0,094	6,18	6,18	10,72	0,76	0,91	10,72	0,76	0,91		1
1,13	0,107	7,01	7,01	12,17	0,76	0,91	12,17	0,76	0,91		
1,25	0,118	7,78	7,78	13,51	0,76	0,91	13,51	0,76	0,91		

Schubfeldwerte

	C	constructions	d der Gebrau	chetauglich	akoit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	CHZZUSIANI	i dei Gebiad	cristaugiloi	iveit .					l	asteinleitu	ing
t _N	т	K 14) 15)	₩ 14) 15)	K*, 15)	K*, 15)	T 16)	16)	T	19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	Λ,	N ₂	N 1	N 2	Rk,g	L R	Rk,I	1,43		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m ² /kN	10 ⁻⁴ - 1/kN	10 ⁻⁴ ·m²/kN	kN/m	m	kN/m	_	kN/m	kN	kN

Normalbefestigung: Verbindung in jedem Untergurt

 a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2: "Eingeschränkte Grenzabmaße (S)" für t_N ≥ 0,75 mm, "Normale Grenzabmaße (N)" für t_N = 0,63 mm.


SAB 19/1050

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm. Radien R= 5 mm

Anlage 1.1.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter Bearbeiter:

Nennstreckgrenze des Stahlkernes f = 320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

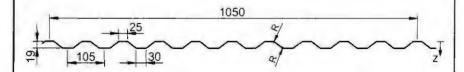
Nenn-	Feldmo-			j	Elastis	ch aufi	nehmb	are Sc	hnittgr	ößen an	Zwische	enauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	Endauf- lagerkraft 6)	Quer-			-			Line	eare Inte	raktion				
dicke		lagerkrait	kraft		5	Stützm	oment	е			Zw	ischena	uflagerkr	äfte	
		= = = 10 mm 40 mm		= 1	10 mm	I _{a B} = 6	60 mm	I _{a,B} = 1	00 mm	_{a,B} = 1	0 mm	I _{a,8} = 8	60 mm	I _{a B} = 1	00 mm
t _N	M _{c,Rk,F}	R _{w,Rk,A}	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN/m	kN/m			kNr	n/m					kN	l/m		
0,63	1,031	7,02 10,85		1,29	1,03	1,29	1,03	1,29	1,03	17,54	14,04	31,45	25,16	38,28	30,63
0,75	1,467	11,49 17,41		1,81	1,45	1,81	1,45	1,81	1,45	28,73	22,99	50,18	40,14	60,73	48,58
0,88	1,824	15,87 23,71		2,18	1,75	2,18	1,75	2,18	1,75	39,67	31,74	68,07	54,46	82,04	65,63
1,00	2,127	20,48 30,26	n.m.	2,49	2,00	2,49	2,00	2,49	2,00	51,21	40,97	86,63	69,31	104,05	83,24
1,13	2,414	26,10 38,14		2,83	2,27	2,83	2,27	2,83	2,27	65,25	52,20	108,88	87,11	130,34	104,27
1,25	2,680	31,84 46,12		3,14	2,51	3,14	2,51	3,14	2,51	79,60	63,68	131,35	105,08	156,79	125,44

Reststützmomente 8)

d,	= 10 m	811	a	₃ = 60 m	ım	a, í	= 100 m	ım	Reststützmomente M _{R,Rk}
min L	max L	max M _{R,Rk}	min L	max L	miax M _{R,Rk}	min L	max L	max M _{R.Rk}	
m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
									M _{R,Rk} = 0 für L≤min L
									M _{R Rk} = L - min L max M
								-	$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{p}$
									M _{R,Rk} = max M _{Rk} für L≥max L
							min L max L max M _{R,Rk} min L max L max M _{R,Rk} min L	min L max L max M _{R,Rk} min L max L max M _{R,Rk} min L max L	min L max L max M _{R,Rk} min L max M _{R,Rk} m m kNm/m m kNm/m m kNm/m

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	- 100 1100 1 0 100	Ve	erbindung	g in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	urt
t _N M _{c,R} mm kNm 0,63 1,02 0,75 1,44 0,88 1,74 1,00 1,98 1,13 2,26	ment	Endauf- lagerkraft		NIA	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	$R_{w,Rk,A}$	M° Rk,B	M _{c,Rk,B}	$R^0_{\ Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,63	1,028	36,72	-	1,031	-	-	36,72	18,36	-	0,515	-	-	18,36
0,75	1,448	47,40	-	1,467	4	-	47,40	23,70	-	0,734	-	-	23,70
0,88	1,746	56,08	-	1,824	-	-	56,08	28,04	-	0,912	-	-	28,04
1,00	1,995	64,09	-	2,127	-	-	64,09	32,04	-	1,063		-	32,04
1,13	2,265	72,76	-	2,414	-	-	72,76	36,38	-	1,207	-	-	36,38
1,25	2,514	80,76	_	2,680	_		80,76	40,38	-	1,340	-	-	40,38


SAB 19KD/1050

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Anlage 1.1.4 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05:08.2025 ter: FREISTAAT Bearbeiter:

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

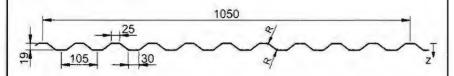
Nenn-	Feldmo-					Elastis	ch aufi	nehmb	are So	hnittgr	ößen an	Zwische	enauflage	ern ^{1) 2) 4)}	5) 7)	
blech-	ment	End	lauf-	Quer-						Line	eare Inte	eraktion				
dicke		lageri	kraft ⁶⁾	kraft		5	Stülzm	oment	е			Zw	ischena	uflagerkr	äfte	
			= 40 mm		= 1			l _{a,8} = 1	00 mm	l _{a,B} = 1	0 mm	1 _{a,B} = 6	60 mm	l _{a 8} = 100 mm		
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ^o _{Rk,B}	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	M ^o _{Rk,B}	M _{o,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNr	n/m						l/m		
0,63	1,028	7,02	10,85		1,29	1,03	1,29	1,03	1,29	1,03	17,54	14,04	31,45	25,16	38,28	30,63
0,75	1,448	11,49	17,41		1,83	1,47	1,83	1,47	1,83	1,47	28,73	22,99	50,18	40,14	60,73	48,58
0,88	1,746	15,87	23,71		2,28	1,82	2,28	1,82	2,28	1,82	39,67	31,74	68,07	54,46	82,04	65,63
1,00	1,995	20,48	30,26	n.m.	2,66	2,13	2,66	2,13	2,66	2,13	51,21	40,97	86,63	69,31	104,05	83,24
1,13	2,265	26,10	38,14		3,02	2,41	3,02	2,41	3,02	2,41	65,25	52,20	108,88	87,11	130,34	104,27
1,25	2,514	31,84	46,12		3,35	2,68	3,35	2,68	3,35	2,68	79,60	63,68	131,35	105,08	156,79	125,44

Reststützmomente 8)

	l _{a,i}	$I_{a,B} = 10 \text{ mm}$ $I_{a,B} = 60 \text{ mm}$ min L max L max M _{B,Rk} min L max L max			m	l _{a.E}	= 100 m	m	R	eststützm	omente M _{R,Rk}	
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}			
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m			
										M _{R,Rk} =	0	für L≤min L
								1			t = r	nin I
										M _{R.Rk} =	max L -	nin L - min L
		1)					M _{R,Rk} =	max M _{R,k}	für L≥max!

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	Feldmo-	Verbindur	ng in jede	em ablieg	jenden G	ourt mit K	alotte 9)10)	Vei	rbindung	in jedem	anliege	nden Gu	t ⁹⁾
blech- dicke	ment	Endauf- lagerkraft		Line	are Inter	aktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	$R_{w,Rk,A}$	M° Rk,B	M _{c,Rk,B}	R° _{Rk,B}	$R_{w,Rk,B}$	$V_{w,Rk}$	R _{w,Rk,A}	M° _{Rk,B}	M _{c,Rk,B}	R° RK,B	$R_{w,Rk,B}$	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,63	1,031	10,85	1,29	1,028	27,14	21,71	-	36,72	-	1,028	-	-	36,72
0,75	1,467	17,41	1,81	1,448	43,53	34,82	-	47,40	-	1,448	-	-	47,40
0,88	1,824	23,71	2,18	1,746	59,27	47,41	-	56,08	-	1,746	-	-	56,08
1,00	2,127	30,26	2,49	1,995	75,65	60,52	-	64,09	-	1,995	-	- 1	64,09
1,13	2,414	38,14	2,83	2,265	95,35	76,28	-	72,76	-	2,265	-		72,76
1,25	2,680	46,12	3,14	2,514	115,30	92,24		80,76		2,514	-	_	80,76


SAB 19KD/1050

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Anlage 1.1.3 zum Prüfbescheid

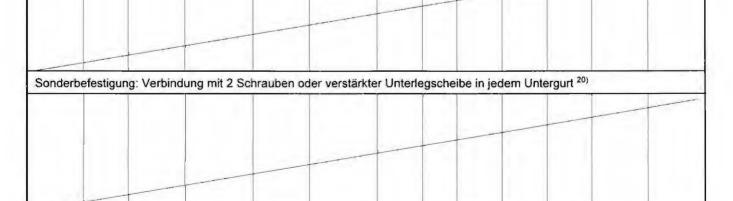
ALS TYPENENTWURF in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Leipzig, den 05.08.2025 Leiter: Beacbeiter:

I V SACHSE

Nennstreckgrenze des Stahlkernes f, =

320 N/mm²


Maßgebende Querschnittswerte

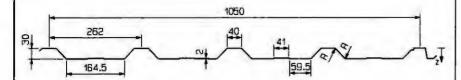
Nenn-	Eigenlast	Biegu	ung ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	J ⁺ eff	I- eff	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	Lgr	L _g ,
mm	kN/m²	cm	i⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,63	0,060	3,54	3,42	6,14	0,76	0,99	4,48	0,81	0,96	1	
0,75	0,071	4,57	4,57	7,93	0,76	0,99	6,91	0,79	0,97	,	/
0,88	0,083	5,41	5,41	9,38	0,76	0,99	8,94	0,77	0,98		/
1,00	0,094	6,18	6,18	10,72	0,76	0,99	10,72	0,76	0,99		1/
1,13	0,107	7,01	7,01	12,17	0,76	0,99	12,17	0,76	0,99		
1,25	0,118	7,78	7,78	13,51	0,76	0,99	13,51	0,76	0,99		

Schubfeldwerte

	G	conzalietono	der Gebrau	chetovaliek	skait 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	CHZZUStarit	dei Gebiau	cristaugiici	INCIL .					l	asteinleitu	ing
t _N	Т	K, 14) 15)	K 14) 15)	K*, 15)	K*, 15)	T 16)	16)	Т	K 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	1,1	1 2	13.1	2	Rk,g	□ R	Rk.I	N ₃		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10-4 · m ² /kN	10-4 - 1/kN	10-4 - m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN

Normalbefestigung: Verbindung in jedem Untergurt

 a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2: "Eingeschränkte Grenzabmaße (S)" für t_N ≥ 0,75 mm, "Normale Grenzabmaße (N)" für t_N = 0,63 mm.


SAB 30KD/1050-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.2.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Maßgebende Querschnittswerte

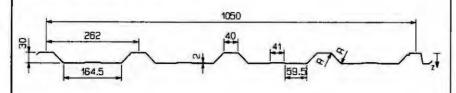
Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	malkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N		†	1- eff	Ag	ig	Z _g	A _{eff}	ien	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,63	0,060	7,27	4,91	6,01	1,18	2,15	1,99	1,32	1,55	/	1
0,75	0,071	10,20	6,86	7,76	1,18	2,15	3,19	1,29	1,56	1	1
0,88	0,083	12,73	8,56	9,18	1,18	2,15	4,31	1,27	1,58	/	1 1
1,00	0,094	14,55	10,21	10,49	1,18	2,15	5,45	1,26	1,59		- 00
1,13	0,107	16,52	12,06	11,91	1,18	2,15	6,78	1,25	1,61		100
1,25	0,118	18,34	13,84	13,22	1,18	2,15	8,08	1,24	1,63		

Schubfeldwerte

			der Gebrau	ahata valiak	skoit 17)		G	renzzus	tand der	Tragfäh	gkeit 18)	
	G	enzzustant	i dei Gebiau	cristaugilor	IKEIL "					l	asteinleitu	ing
t _N	T	K, 14) 15)	K, 14) 15)	K*, ¹⁵⁾	K*, 15)	T 16)	16)	T	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	124	112	IX 1	1 2	Rk,g	□R	Rk,I	143		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m ² /kN	10-4 - 1/kN	10 ⁻⁴ · m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN

Normalbefestigung: Verbindung in jedem Untergurt

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2: "Eingeschränkte Grenzabmaße (S)" für $t_N \ge 0.75$ mm. "Normale Grenzabmaße (N)" für $t_N = 0.63$ mm.


SAB 30KD/1050-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.2.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025

Nennstreckgrenze des Stahlkernes f, =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

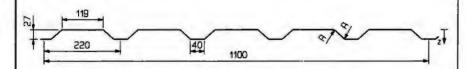
Nenn-	Feldmo-				1	Elastis	ch aufr	nehmb	are So	hnittgr	ößen an	Zwische	nauflage	ern 1) 2) 4) :	5) 7)	
blech-	ment	End	lauf- kraft ⁶⁾	Quer-						Line	eare Inte	eraktion				
dicke		lagen	(lait	kraft		5	Stützm	oment	е			Zw	ischenau	uflagerkrá	ifte	
t _N M _{c,Rk,F}	= 10 mm	l _{a2} = 40 mm		I _{a,8} = 1	I0 mm	I _{aB} = 6	60 mm	I _{a.9} = 1	00 mm) _{a,B} = 1	0 mm	I _{a.B} = 6	0 mm	i _{a B} = 10	00 mm	
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M° Rk,B	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m			kNr	n/m					kN	l/m		
0,63	0,865	2,90	4,49		1,05	0,84	1,05	0,84	1,05	0,84	7,26	5,81	13,02	10,41	15,85	12,68
0,75	1,261	4,76	7,21		1,55	1,24	1,55	1,24	1,55	1,24	11,89	9,52	20,77	16,62	25,14	20,11
0,88	1,610	6,57	9,81	-	2,01	1,61	2,01	1,61	2,01	1,61	16,42	13,14	28,18	22,54	33,96	27,17
1,00	1,949	8,48	12,53	n.m.	2,45	1,96	2,45	1,96	2,45	1,96	21,20	16,96	35,86	28,69	43,07	34,46
1,13	2,327	10,80	15,79		2,96	2,37	2,96	2,37	2,96	2,37	27,01	21,61	45,07	36,06	53,96	43,16
1,25	2,682	13,18	19,09		3,45	2,76	3,45	2,76	3,45	2,76	32,95	26,36	54,37	43,50	64,91	51,93

Reststützmomente 8)

	l _{a,i}	_B = 10 m	ım	l _{a,8}	₃ = 60 m	m	l _{a.E}	,=100 m	nm	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R Rk} = 0 für L≤min L
										$M_{RRk} = \frac{L - \min L}{\max M_{R}}$
										max L – min L
٦.										M _{R.Rk} = max M _{R.k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

	Verbindur	ng in jede	m ablieg	enden C	Burt mit K	alotte 9)10)	Vei	rbindung	in jedem	anliege	nden Gu	rt ⁹⁾
ment	Endauf- lagerkraft		Linea	are Inte	raktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
M _{c,Rk,F}	$R_{w,Rk,A}$	M° RK,8	M _{c,Rk,B}	R° Rk,B	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,840	4,49	1,082	0,865	11,23	8,99	-	18,85	-	0,865	-	- 1	18,85
1,238	7,21	1,576	1,261	18,02	14,42	-	29,86	-	1,261			29,86
1,609	9,81	2,013	1,610	24,53	19,63	-	35,32	_	1,610		-	35,32
1,963	12,53	2,436	1,949	31,32	25,05	-	40,37	-	1,949		-	40,37
2,370	15,79	2,909	2,327	39,47	31,58	-	45,83	-	2,327		- 1	45,83
2,756	19,09	3,352	2,682	47,73	38,18	-	50,87	-	2,682	-	-	50,87
	M _{c,Rk,F} kNm/m 0,840 1,238 1,609 1,963 2,370	M Endauflagerkraft M R kNm/m kN/m 0,840 4,49 1,238 7,21 1,609 9,81 1,963 12,53 2,370 15,79	M Endauflagerkraft M R M° RK.8 M° RK.8 kNm/m kN/m kNm/m 0,840 4,49 1,082 1,238 7,21 1,576 1,609 9,81 2,013 1,963 12,53 2,436 2,370 15,79 2,909	Ment lagerkraft Endauflagerkraft Lines Mc,Rk,F R,R,R,A M°R,R,B Mc,Rk,B kNm/m kN/m kNm/m kNm/m 0,840 4,49 1,082 0,865 1,238 7,21 1,576 1,261 1,609 9,81 2,013 1,610 1,963 12,53 2,436 1,949 2,370 15,79 2,909 2,327	Ment lagerkraft Lineare Intermediate Mc,Rk,F R, R	Mc,Rk,F Rw,Rk,A M°Rk,B Mc,Rk,B R°Rk,B R°Rk	Ment lagerkraft Lineare Interaktion M _{c,Rk,F} R _{w,Rk,A} M° _{Rk,B} M _{c,Rk,B} R° _{Rk,B} R _{w,Rk,B} V _{w,Rk} kNm/m kN/m kNm/m kN/m kN/m kN/m kN/m 0,840 4,49 1,082 0,865 11,23 8,99 - 1,238 7,21 1,576 1,261 18,02 14,42 - 1,609 9,81 2,013 1,610 24,53 19,63 - 1,963 12,53 2,436 1,949 31,32 25,05 - 2,370 15,79 2,909 2,327 39,47 31,58 -	ment Endauf- lagerkraft Lineare Interaktion Endauf- lagerkraft M _{c,Rk,F} R _{w,Rk,A} M° _{Rk,B} M _{c,Rk,B} R° _{Rk,B} R _{w,Rk,B} V _{w,Rk} R _{w,Rk,A} kNm/m kN/m kN/m kN/m kN/m kN/m kN/m 0,840 4,49 1,082 0,865 11,23 8,99 - 18,85 1,238 7,21 1,576 1,261 18,02 14,42 - 29,86 1,609 9,81 2,013 1,610 24,53 19,63 - 35,32 1,963 12,53 2,436 1,949 31,32 25,05 - 40,37 2,370 15,79 2,909 2,327 39,47 31,58 - 45,83	Hard Form Hard	Hard Form Hard	Endauf- Independent Inde	Endauf-


SAB 30/1100

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.3.1 zum Prüfbescheid

ALS TYPENENTWURF

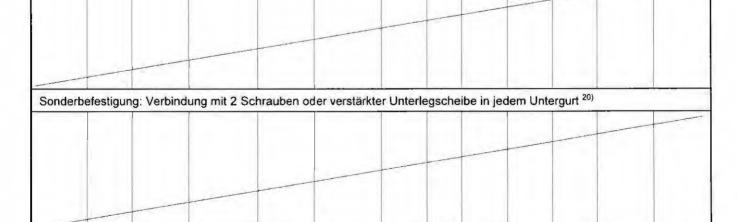
in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Bearbeiter:

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²


Maßgebende Querschnittswerte

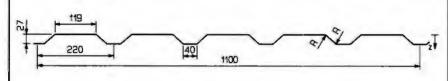
Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke	20			nicht redu:	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	i ⁺ eff	I- eff	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,63	0,057	4,63	6,35	5,99	1,10	0,91	2,36	1,18	1,31	/	1
0,75	0,068	6,47	8,87	7,74	1,10	0,91	3,77	1,16	1,30	,	/
0,88	0,079	8,08	11,06	9,15	1,10	0,91	5,09	1,14	1,29	/	/
1,00	0,090	9,63	12,65	10,46	1,10	0,91	6,43	1,13	1,28	1	1.7
1,13	0,102	11,38	14,36	11,88	1,10	0,91	7,99	1,12	1,26	1	
1,25	0,113	13,05	15,94	13,18	1,10	0,91	9,49	1,12	1,25		

Schubfeldwerte

		construction of	i der Gebrau	abata raliak	akoit 17)		G	renzzus	tand der	Tragfäh	gkeit 18)	
	اب	enzzustant	der Gebrac	icristaugiici	IVEIT						asteinleitu	ing
T _N	T	K, 14) 15)	K, 14) 15)	K*, ¹⁵⁾	K*, 15)	T 16)	16)	Т	K, ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	IN ₁	1,2	IX 1	2	Rk,g	□ R	Rk.I	1,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10⁴-1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN

Normalbefestigung: Verbindung in jedem Untergurt

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2: "Eingeschränkte Grenzabmaße (S)" für $t_N \ge 0.75$ mm, "Normale Grenzabmaße (N)" für $t_N = 0.63$ mm.


SAB 30/1100

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.3.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

eiter: FREISTAAT Bearbeiter:

SACHSEN

Nennstreckgrenze des Stahlkernes f_{y,k} = 320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

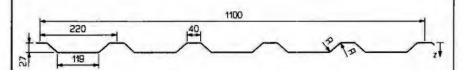
Feldmo-					Elastis	ch aufr	nehmb	are So	hnittgr	óßen an	Zwische	nauflage	rn ^{1) 2) 4) !}	5) 7)	
ment			Quer-						Line	are Inte	raktion				
	lagen	(rail '	kraft		5	Stützım	oment	е			Zwi	ischenau	ıflagerkrá	äfte	
	1			l _{a,B} = 1	0 mm	I _{a B} = 6	60 mm	I _{a B} = 1	00 mm	I _{a,8} = 1	0 mm	l _{aB} = 6	0 mm	I _{a B} = 10	00 mm
M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	Mº RK,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
kNm/m	-		kN/m			kNr	n/m								
0,890	3,40	5,26		1,20	0,96	1,20	0,96	1,20	0,96	8,51	6,81	15,25	12,20	18,57	14,85
1,309	5,57	8,44		1,71	1,37	1,71	1,37	1,71	1,37	13,94	11,15	24,34	19,47	29,45	23,56
1,697	7,70	11,50	-	2,16	1,73	2,16	1,73	2,16	1,73	19,24	15,39	33,02	26,41	39,79	31,83
2,074	9,93	14,68	n.m.	2,60	2,08	2,60	2,08	2,60	2,08	24,84	19,87	42,02	33,61	50,47	40,37
2,499	12,66	18,50		3,09	2,47	3,09	2,47	3,09	2,47	31,64	25,32	52,81	42,25	63,21	50,57
2,902	15,44	22,37		3.55	2.84	3,55	2.84	3,55	2.84	38,61	30,89	63,70	50.96	76.05	60.84
	M _{c,Rk,F} kNm/m 0,890 1,309 1,697 2,074 2,499	ment lager l	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ment Endauflagerkraft 6) Querkraft I _{a1} = I _{a2} = 10 mm 40 mm V _{w,Rk} kNm/m kN/m kN/m 0,890 3,40 5,26 1,309 5,57 8,44 1,697 7,70 11,50 2,074 9,93 14,68 2,499 12,66 18,50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										

Reststützmomente 8)

	i _{a,i}	= 10 m	ım	l _{a,l}	_B = 60 m	m	l _{a,E}	= 100 m	ım	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R.Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R.Rk} = 0 für L≤min L
										$M_{RRk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{RR}$
										M _{RRk} = max M _{Rk} für L≥max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	0	Ve	erbindung	g in jeder	n anlieg	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N		R _{w,Rk,A}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M° _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,63	0,958	20,73	-	0,890	-	-	20,73	10,36	4	0,445	-	-	10,36
0,75	1,368	32,14	-	1,309	-	-	32,14	16,07	-	0,654	-	-	16,07
0,88	1,729	38,02	-	1,697	-	-	38,02	19,01	4	0,849	1	_	19,01
1,00	2,080	43,44	-	2,074	-	-	43,44	21,72	-	1,037	-	-	21,72
1,13	2,474	49,32	-	2,499	-	-	49,32	24,66	-	1,250	-	-	24,66
1,25	2,842	54,75	-	2,902	-	-	54,75	27,37	-	1,451	-	-	27,37
								A.					


SAB 30/1100

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Anlage 1.3.3 zum Prüfbescheid

ALS TYPENENTWURF

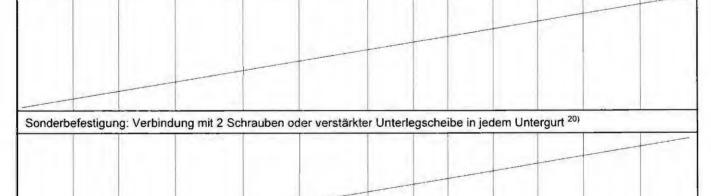
in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: FREISTAAT Bearbeiter:

Nennstreckgrenze des Stahlkernes f =

320 N/mm²


Maßgebende Querschnittswerte

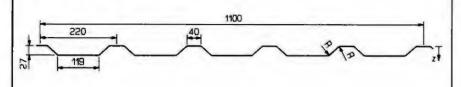
Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ng		Grenzstü	tzweiten 13)
blech- dicke				nicht reduz	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	j+ eff	- eff	A _g	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	Lgr
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,63	0,057	6,35	4,63	5,99	1,10	1,79	2,36	1,18	1,39	/	1
0,75	0,068	8,87	6,47	7,74	1,10	1,79	3,77	1,16	1,40	/	1 /
0,88	0,079	11,06	8,08	9,15	1,10	1,79	5,09	1,14	1,41	/	1
1,00	0,090	12,65	9,63	10,46	1,10	1,79	6,43	1,13	1,42		
1,13	0,102	14,36	11,38	11,88	1,10	1,79	7,99	1,12	1,44	. A	
1,25	0,113	15,94	13,05	13,18	1,10	1,79	9,49	1,12	1,45		1.0

Schubfeldwerte

	0		der Gebrau	abataualiak	akait 17)		G	renzzus	tand der	Tragfäh	gkeit 18)	
	G	enzzustand	i der Gebrau	cristaugiici	ikeit		-			l	asteinleitu	ing
t _N	т	K, 14) 15)	14) 15)	K*, 15)	K*, 15)	T 16)	16)	T	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	174	1 2		1 2	Rk,g	⁻R	Rk,I	1,73		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m ² /kN	10-4-1/kN	10 ⁻⁴ ·m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN

Normalbefestigung: Verbindung in jedem Untergurt

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2: "Eingeschränkte Grenzabmaße (S)" für t_N ≥ 0,75 mm, "Normale Grenzabmaße (N)" für t_N = 0,63 mm.


SAB 30/1100

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Anlage 1.3.4 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				1	Elastis	ch aufi	nehmb	are Sc	hnittgr	ößen an	Zwische	nauflage	rn 1) 2) 4) 5	5) 7)	
blech-	ment	End	lauf- kraft ⁶⁾	Quer-						Line	eare Inte	eraktion				
dicke		layen	tiait "	kraft		5	Stützm	oment	е			Zwi	ischenau	ıflagerkrä	ifte	
t _N M _{c,Rk,F}	_{a1} = 10 mm	_{a2} = 40 mm		= 1	0 mm	l _{a,B} = €	30 mm	I _{a.8} = 1	00 mm	I _{a,8} = 1	0 mm	I _{a,8} = 6	0 mm	I _{a,B} = 1()0 mm	
t _N	M _{c,Rk,F}	R _w	.Rk,A	V _{w,Rk}	Mº Rk,B	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m		-	kNr	n/m					kN	/m		
0,63	0,958	3,40	5,26		1,11	0,89	1,11	0,89	1,11	0,89	8,51	6,81	15,25	12,20	18,57	14,85
0,75	1,368	5,57	8,44		1,64	1,31	1,64	1,31	1,64	1,31	13,94	11,15	24,34	19,47	29,45	23,56
0,88	1,729	7,70	11,50	-	2,12	1,70	2,12	1,70	2,12	1,70	19,24	15,39	33,02	26,41	39,79	31,83
1,00	2,080	9,93	14,68	n.m.	2,59	2,07	2,59	2,07	2,59	2,07	24,84	19,87	42,02	33,61	50,47	40,37
1,13	2,474	12,66	18,50		3,12	2,50	3,12	2,50	3,12	2,50	31,64	25,32	52,81	42,25	63,21	50,57
1,25	2,842	15,44	22,37		3,63	2,90	3,63	2,90	3,63	2,90	38,61	30,89	63,70	50,96	76,05	60,84

Reststützmomente 8)

	lai	= 10 m	m	l _{a,l}	= 60 m	m	l _{a.t}	_B = 100 m	m	Reststützmomente M _{R,Rk}
LN	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R.Rk} = 0 für L≤min L
										1
										$\mathbf{M}_{RRk} = \frac{\mathbf{L} - \min \mathbf{L}}{\max \mathbf{L} - \min \mathbf{L}} \cdot \max \mathbf{M}_{RRk}$
										max 2 mm 2
										M _{R.Rk} = max M _{R,k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-		Verbindur	ng in jede	em ablieg	jenden C	Burt mit K	alotte 9)10)	Ve	rbindung	in jedem	anliege	nden Gu	rt ⁹⁾
blech- dicke	ment	Endauf- lagerkraft		Line	are Inter	raktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° Rk,B	R _{w,Rk,B}	V _{w,Rk}	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,63	0,890	5,26	1,20	0,958	13,16	10,53	-	20,73	-	0,958	-	-	20,73
0,75	1,309	8,44	1,71	1,368	21,11	16,89	-	32,14	-	1,368	-	-	32,14
0,88	1,697	11,50	2,16	1,729	28,74	23,00	-	38,02	-	1,729	-	-	38,02
1,00	2,074	14,68	2,60	2,080	36,69	29,35	-	43,44	-	2,080	-	-	43,44
1,13	2,499	18,50	3,09	2,474	46,24	37,00	-	49,32	-	2,474	-	-	49,32
1,25	2,902	22,37	3,55	2,842	55,92	44,74	•	54,75	-	2,842	-	-	54,75
	1												

SAB 35(R)/1035

Anlage 1.4.1 zum Prüfbescheid

ALS TYPENENTWURF

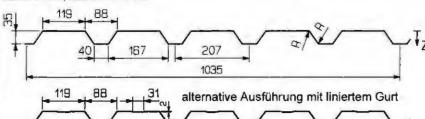
in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

SACHSEN

Leiter


FREISTAAT Bearbeiter:

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

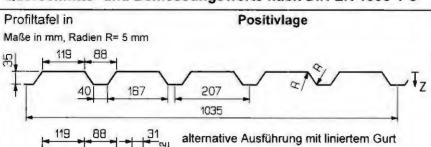
Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	1 ⁺ eff	l- eff	Ag	i _o	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,63	0,060	8,29	11,40	6,43	1,42	1,18	2,52	1,53	1,70	-	
0,75	0,072	11,58	15,91	8,30	1,42	1,18	4,03	1,50	1,68	0,70	0,88
0,88	0,084	14,44	19,77	9,82	1,42	1,18	5,45	1,48	1,67	1,42	1,78
1,00	0,096	17,22	22,59	11,22	1,42	1,18	6,88	1,46	1,65	2,09	2,61
1,13	0,108	20,34	25,65	12,74	1,42	1,18	8,55	1,45	1,64	2,37	2,96
1,25	0,120	23,31	28,46	14,14	1,42	1,18	10,16	1,44	1,62	2,63	3,29

Schubfeldwerte


	C.	onzzuetene	der Gebrau	chetavalie	alcoit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	GI	enzzustank	dei Gebiau	ichstauglici	ikeil "					L	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, ¹⁵⁾	K*, 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	- b,Ck	14	1,2	** 1	2	'Rk,g	TR	- Rk,I	1,3		130 mm	280 mm
mm	kN/m	10⁴-m/kN	10 ⁻⁴ · m ² /kN	10⁴ ·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ıg: Verbindi	ung in jedem	Untergurt								
0,63	2,27	0,265	10,423	3,382	1,449	7,51	2,75	13,81	0,171	3,05	6,55	10,09
0,75	3,61	0,205	6,561	3,382	1,449	11,01	2,75	29,70	0,187	4,02	8,77	13,51
0,88	5,50	0,174	4,310	3,382	1,449	14,17	2,75	49,19	0,204	5,18	10,38	15,99
1,00	7,68	0,152	3,086	3,382	1,449	17,31	2,75	73,43	0,218	6,32	11,86	18,27
1,13	10,54	0,134	2,247	3,382	1,449	20,94	2,75	87,20	0,232	7,65	13,46	20,75
1,25	13,69	0,121	1,731	3,382	1,449	24,49	2,75	96,80	0,245	8,95	14,95	23,03
Sonderb	efestigur	ıg: Verbindi	ung mit 2 Scl	hrauben od	er verstärkte	r Unterle	gschei	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,63	2,16	0,265	9,307	3,382	0,725	7,51	2,75	13,81	0,240	5,02	6,55	10,09
0,75	3,43	0,205	5,858	3,382	0,725	11,01	2,75	29,70	0,240	6,63	8,77	13,51
0,88	5,23	0,174	3,848	3,382	0,725	14,17	2,75	49,19	0,240	8,53	10,38	15,99
1,00	7,30	0,152	2,756	3,382	0,725	17,31	2,75	73,43	0,240	10,42	11,86	18,27
1,13	10,03	0,134	2,006	3,382	0,725	20,94	2,75	87,20	0,240	12,61	13,46	20,75
1,25	13,02	0,121	1,545	3,382	0,725	24,49	2,75	96,80	0,240	14,74	14,95	23,03

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2:

[&]quot;Eingeschränkte Grenzabmaße (S)" für t_N ≥ 0,75 rnm, "Normale Grenzabmaße (N)" für t_N = 0,63 mm.

SAB 35(R)/1035

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Leiter FREISTAAT

Leipzig, den 05.08.2025 Bearbeiter:

Anlage 1.4.2 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

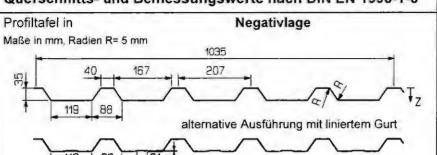
Landesstelle für Bautechnik

SACHSEN

Nennstreckgrenze des Stahlkernes f., = 320 N/mm² Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-					Elastis	ch aufr	nehmb	are Sc	hnittgr	ößen an	Zwische	nauflage	rn 1) 2) 4) 5	5) 7)	
blech-	ment		auf-	Quer-						Line	eare Inte	raktion				
dicke		lagen	kraft ⁶⁾	kraft		9	Stützm	oment	е			Zwi	ischenau	ıflagerkrá	ifte	
		I _{a1} = 10 mm	I _{a2} = 40 mm		= 1	10 mm	l _{a8} = 6	60 mm	I _{a,B} = 1	00 mm	_{aB} = 1	0 mm	i _{a,B} = 6	0 mm	_{a,B} = 16	00 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	Mº Rk,B	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R° Rk,B	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN		kN/m			kNr	n/m						/m		
0,63	1,235	3,85	5,96		1,67	1,34	1,67	1,34	1,67	1,34	9,63	7,70	17,25	13,80	21,00	16,80
0,75	1,813	6,31	9,55		2,38	1,90	2,38	1,90	2,38	1,90	15,77	12,61	27,53	22,03	33,32	26,65
0,88	2,349	8,71	13,01		3,00	2,40	3,00	2,40	3,00	2,40	21,77	17,41	37,35	29,88	45,01	36,01
1,00	2,865	11,24	16,60	n.m.	3,61	2,89	3,61	2,89	3,61	2,89	28,10	22,48	47,53	38,03	57,09	45,67
1,13	3,462	14,32	20,93		4,29	3,43	4,29	3,43	4,29	3,43	35,80	28,64	59,74	47,79	71,51	57,21
1,25	4,018	17,47	25,30		4,91	3,93	4,91	3,93	4,91	3,93	43,68	34,94	72,07	57,65	86,03	68,82

Reststützmomente 8)


	l _{a,i}	_B = 10 m	ım	l _{a,E}	= 60 m	m	l _{a.6}	,=100 m	m	Reststützmomente M _{R,Rk}
I _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R Rk} = 0 für L≤min L
										$M_{RRx} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R}$
		1								

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

	Feldmo- ment	Ve	erbindun	g in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MIA	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,63	1,336	27,41	-	1,235	-	-	27,41	13,71	-	0,618	-	-	13,71
0,75	1,903	43,88	-	1,813	-	-	43,88	21,94	-	0,907	_	_	21,94
0,88	2,403	51,90	-	2,349	-	-	51,90	25,95	-	1,174	-	-	25,95
1,00	2,887	59,31	-	2,865	_	-	59,31	29,65	-	1,432	-	-	29,65
1,13	3,432	67,33	_	3,462	-	-	67,33	33,66	-	1,731	-	-	33,66
1,25	3,929	74,73	-	4,018	-	-	74,73	37,36	-	2,009	-	-	37,36

SAB 35(R)/1035

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1.4.3 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: FREISTAAT Bearbeiter:

FREISTAAI SACHSEN

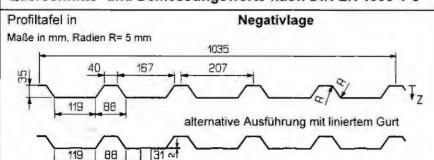
Nennstreckgrenze des Stahlkernes f

320 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ng		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	- eff	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	4/m	cm²/m	cr	n	cm²/m	cr	n	-	m
0,63	0,060	11,40	8,29	6,43	1,42	2,32	2,52	1,53	1,80	-	-
0,75	0,072	15,91	11,58	8,30	1,42	2,32	4,03	1,50	1,82	1,10	1,37
0,88	0,084	19,77	14,44	9,82	1,42	2,32	5,45	1,48	1,83	1,92	2,40
1,00	0,096	22,59	17,22	11,22	1,42	2,32	6,88	1,46	1,85	2,68	3,35
1,13	0,108	25,65	20,34	12,74	1,42	2,32	8,55	1,45	1,86	3,04	3,80
1,25	0,120	28,46	23,31	14,14	1,42	2,32	10,16	1,44	1,88	3,34	4,18

Schubfeldwerte


	C	constant	d der Gebrau	obetovalist	skoit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	enzzustant	der Gebrau	cristaugiici	IKEIL					L	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15}	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	14	1 2	1 1	2	Rk,g	-R	* Rk,J	. ,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10⁴ ·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbindi	ung in jedem	Untergurt								
0,63	2,82	0,265	9,201	3,382	1,449	7,51	2,75	13,81	0,121	5,24	7,58	9,59
0,75	4,48	0,205	5,792	3,382	1,449	11,01	2,75	29,70	0,133	6,91	10,16	12,84
0,88	6,81	0,174	3,804	3,382	1,449	14,17	2,75	49,19	0,144	8,90	12,02	15,20
1,00	9,51	0,152	2,724	3,382	1,449	17,31	2,75	73,43	0,154	10,87	13,74	17,37
1,13	13,07	0,134	1,983	3,382	1,449	20,94	2,75	87,20	0,164	13,15	15,60	19,72
1,25	16,97	0,121	1,528	3,382	1,449	24,49	2,75	96,80	0,173	15,38	17,32	21,89
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gschei	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,63	10,39	0,265	0,651	3,382	0,725	7,51	2,75	13,81	0,425	12,94	7,58	9,59
0,75	16,50	0,205	0,410	3,382	0,725	11,01	2,75	29,70	0,425	17,08	10,16	12,84
0,88	25,13	0,174	0,269	3,382	0,725	14,17	2,75	49,19	0,425	21,99	12,02	15,20
1,00	35,08	0,152	0,193	3,382	0,725	17,31	2,75	73,43	0,425	26,86	13,74	17,37
1,13	48,19	0,134	0,140	3,382	0,725	20,94	2,75	87,20	0,425	32,50	15,60	19,72
1,25	62,57	0,121	0,108	3,382	0,725	24,49	2,75	96,80	0,425	38,01	17,32	21,89

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2:

[&]quot;Eingeschränkte Grenzabmaße (S)" für $t_N \ge 0.75$ mm. "Normale Grenzabmaße (N)" für $t_N = 0.63$ mm.

SAB 35(R)/1035

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1.4.4 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter: SACHSEN

Nennstreckgrenze des Stahlkernes f = 320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

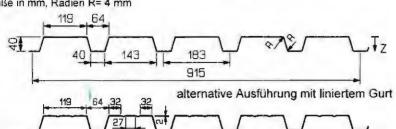
Nenn-	Feldmo-				3	Elastis	ch aufi	nehmb	are So	chnittgr	ößen an	Zwische	nauflage	ern ^{1) 2) 4) 5}	5) 7)	
blech-	ment	End	lauf-	Quer-						Line	eare Inte	eraktion				
dicke		lagen	kraft ⁶⁾	kraft		5	Stützm	oment	е			Zw	ischenau	uflagerkrä	ifte	
t _N M _{c,Rk,F}	= 10 mm	l _{a2} = 40 mm		I _{a B} = 1	10 mm	= 6	60 mm	= 1	00 mm	I _{a,B} = 1	0 mm	I _{a.8} = 6	0 mm	_{a,B} = 1()0 mm	
t _N	M _{c,Rk,F}	R"	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	Rº Rk,B	R _{w,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNı	m/m						l/m		
0,63	1,336	3,85	5,96		1,54	1,24	1,54	1,24	1,54	1,24	9,63	7,70	17,25	13,80	21,00	16,80
0,75	1,903	6,31	9,55		2,27	1,81	2,27	1,81	2,27	1,81	15,77	12,61	27,53	22,03	33,32	26,65
0,88	2,403	8,71	13,01		2,94	2,35	2,94	2,35	2,94	2,35	21,77	17,41	37,35	29,88	45,01	36,01
1,00	2,887	11,24	16,60	n.m.	3,58	2,86	3,58	2,86	3,58	2,86	28,10	22,48	47,53	38,03	57,09	45,67
1,13	3,432	14,32	20,93		4,33	3,46	4,33	3,46	4,33	3,46	35,80	28,64	59,74	47,79	71,51	57,21
1,25	3,929	17,47	25,30		5,02	4,02	5,02	4,02	5,02	4,02	43,68	34,94	72,07	57,65	86,03	68,82

Reststützmomente 8)

	l _{a,}	_B = 10 m	m	l _{a,t}	_B = 60 m	m	l _{a,t}	= 100 m	m	Reststützmomente M _{R,Rk}
Į _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										$\mathbf{M}_{R,Rk} = \frac{\mathbf{L} - \min \mathbf{L}}{\max \mathbf{L} - \min \mathbf{L}} \cdot \max \mathbf{M}_{R,Rk}$
										Wild E
										M _{R.Rk} = max M _{R.k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

		Verbindur	ng in jede	em ablieg	enden C	Burt mit K	alotte 9)10)	Vei	rbindung	in jedem	anliege	nden Gu	rt ⁹⁾
blech- dicke	ment	Endauf- lagerkraft		Line	are Inte	raktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° Rk,B	Fl _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° RK,B	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,63	1,235	5,96	1,67	1,336	14,89	11,91	-	27,41	-	1,336	-	-	27,41
0,75	1,813	9,55	2,38	1,903	23,88	19,11		43,88	-	1,903		-	43,88
0,88	2,349	13,01	3,00	2,403	32,52	26,01		51,90	-	2,403	_	-	51,90
1,00	2,865	16,60	3,61	2,887	41,51	33,20		59,31		2,887		-	59,31
1,13	3,462	20,93	4,29	3,432	52,32	41,85	-	67,33	-	3,432	-	- 1	67,33
1,25	4,018	25,30	4,91	3,929	63,26	50,61	-	74,73	_	3,929	-	- 1	74,73

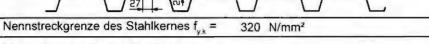

SAB 40(R)/915

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 4 mm


Anlage 1.5.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 FREISTAAT Bearbeiter: Leiter: SACHSEN

Maßgebende Querschnittswerte

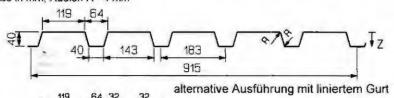
Nenn-	Eigenlast	Biegu	ıng ¹¹⁾		Norn	nalkraftbe	anspruchu	ng		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksame	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	i ⁺ eff	l- eff	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	4/m	cm²/m	cr	n	cm²/m	cr	n		m
0,63	0,068	11,93	16,53	7,15	1,62	1,34	2,87	1,73	1,94	1-1	-
0,75	0,081	16,69	23,08	9,23	1,62	1,34	4,57	1,70	1,92	1,41	1,76
0,88	0,095	20,82	28,48	10,91	1,62	1,34	6,16	1,67	1,90	2,39	2,99
1,00	0,108	24,82	32,53	12,47	1,61	1,34	7,77	1,66	1,89	3,30	4,12
1,13	0,123	29,32	36,91	14,16	1,61	1,34	9,63	1,65	1,87	3,73	4,66
1,25	0,136	33,61	40,96	15,71	1,61	1,34	11,39	1,63	1,84	4,16	5,20

Schubfeldwerte

	· ·		d der Gebrau	ahata valiah	to (17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	GI	enzzustant	i dei Gebiau	cristaugilor	ikeit "					l	asteinleitu	ıng
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T 16)	L ₈ ¹⁶⁾	T _{Rk,i}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	* b,Ck	14		. 1	2	T _{Rk,9} 16)	-R	- Rk,i	,,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m²/kN	10⁴·1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,63	1,79	0,298	16,066	3,825	1,281	6,87	3,25	13,81	0,149	2,92	6,55	10,09
0,75	2,85	0,231	10,113	3,825	1,281	10,07	3,25	29,70	0,164	3,86	8,77	13,51
0,88	4,34	0,195	6,643	3,825	1,281	12,95	3,25	49,19	0,178	4,97	10,38	15,99
1,00	6,06	0,171	4,757	3,825	1,281	15,82	3,25	73,43	0,191	6,07	11,86	18,27
1,13	8,32	0,151	3,463	3,825	1,281	19,13	3,25	87,20	0,203	7,34	13,46	20,75
1,25	10,80	0,136	2,667	3,825	1,281	22,36	3,25	96,80	0,214	8,59	14,95	23,03
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	egschei	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,63	1,70	0,298	15,264	3,825	0,641	6,87	3,25	13,81	0,225	4,06	6,55	10,09
0,75	2,71	0,231	9,608	3,825	0,641	10,07	3,25	29,70	0,225	5,36	8,77	13,51
0,88	4,12	0,195	6,311	3,825	0,641	12,95	3,25	49,19	0,225	6,89	10,38	15,99
1,00	5,76	0,171	4,520	3,825	0,641	15,82	3,25	73,43	0,225	8,42	11,86	18,27
1,13	7,91	0,151	3,290	3,825	0,641	19,13	3,25	87,20	0,225	10,19	13,46	20,75
1,25	10,26	0.136	2,534	3,825	0,641	22,36	3,25	96,80	0,225	11,92	14,95	23,03

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2:

[&]quot;Eingeschränkte Grenzabmaße (S)" für t_N ≥ 0,75 mm, "Normale Grenzabmaße (N)" für t_N = 0,63 mm.


SAB 40(R)/915

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Maße in mm, Radien R= 4 mm

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Anlage 1.5.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025

Leiter: Bearbeiter: FREISTAAT SACHSEN

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				(Elastis	ch aufr	nehmb	are So	hnittgr	ößen an	Zwische	nauflage	rn 1) 2) 4)	5) 7)	
blech-	ment		auf-	Quer-						Line	eare Inte	raktion				
dicke		lagen	kraft 6)	kraft		5	Stützm	oment	е			Zw	ischenau	ıflagerkr	äfte	
			_{a2} = 40 mm		I _{a,B} = 1	0 mm	I _{a,8} = 6	i0 mm	 _{a,B} = 1	00 mm	I _{a,B} = 1	0 mm	I _{a,B} = 6	0 mm	I _{a B} = 10	00 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M° Rk,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ^D Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		kN/m	kN/m			kNr	n/m						/m		
0,63	1,560	4,80	7,42		2,11	1,69	2,11	1,69	2,11	1,69	11,99	9,59	21,50	17,20	26,17	20,94
0,75	2,294	7,86	11,90		3,01	2,41	3,01	2,41	3,01	2,41	19,64	15,71	34,30	27,44	41,51	33,21
0,88	2,976	10,85	16,21		3,80	3,04	3,80	3,04	3,80	3,04	27,12	21,70	46,54	37,23	56,08	44,87
1,00	3,623	14,00	20,69	n.m.	4,56	3,65	4,56	3,65	4,56	3,65	35,01	28,01	59,22	47,38	71,13	56,90
1,13	4,409	17,84	26,07		5,43	4,34	5,43	4,34	5,43	4,34	44,60	35,68	74,43	59,55	89,10	71,28
1,25	5,116	21,77	31,53		6,17	4,93	6,17	4,93	6,17	4,93	54,42	43,53	89,79	71,83	107,18	85,75

Reststützmomente 8)

	l _{a,l}	_B = 10 m	im	l _{a,t}	= 60 m	nm	l _{a,l}	_s = 100 m	ım	R	eststützmo	mente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R.Rk}	min L	max L	max M _{R,Rk}			
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m			
										M _{R Rk} =	0	für L≤min L
											L – m	in I
										M _{R,Rk} =	max L -	max M
- 11										M _{R,Rk} =	max M _{R k}	für L≥max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-	Feldmo-	Ve	erbindun	g in jeden	n anlieg	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	Surt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ıktion		Endauf- lagerkraft		MA	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	$R^0_{Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,63	1,690	36,01	-	1,560	-	-	36,01	18,01	-	0,780	•	-	18,01
0,75	2,409	55,43	-	2,294	-	-	55,43	27,72	4	1,147	-	-	27,72
0,88	3,041	65,55	31	2,976	~	-	65,55	32,78	-	1,488	2	-	32,78
1,00	3,652	74,88	-	3,623	-	-	74,88	37,44	-	1,812	-	- 1	37,44
1,13	4,345	84,98	-	4,409	-	- 1	84,98	42,49	-	2,205	-	-	42,49
1,25	4,932	94,30	-	5,116	-	-	94,30	47,15	-	2,558	-	-	47,15

SAB 40(R)/915

Anlage 1.5.3 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

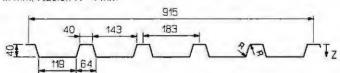
Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025

SACHSEN

Leiter:


FREISTAAT Bearbeiter:

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 4 mm

alternative Ausführung mit liniertem Gurt

Nennstreckgrenze des Stahlkernes f_{y,k} =

320 N/mm²

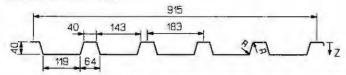
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ng		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu:	zierter Qu	erschnitt	wirksame	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	l- _{eff}	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	4/m	cm²/m	cr	n	cm²/m	cr	n		m
0,63	0,068	16,53	11,93	7,15	1,62	2,66	2,87	1,73	2,06	-	-
0,75	0,081	23,08	16,69	9,23	1,62	2,66	4,57	1,70	2,08	1,60	2,00
0,88	0,095	28,48	20,82	10,91	1,62	2,66	6,16	1,67	2,10	2,48	3,10
1,00	0,108	32,53	24,82	12,47	1,61	2,66	7,77	1,66	2,11	3,30	4,12
1,13	0,123	36,91	29,32	14,16	1,61	2,66	9,63	1,65	2,13	3,73	4,66
1,25	0,136	40,96	33,61	15,71	1,61	2,66	11,39	1,63	2,16	4,16	5,20

Schubfeldwerte

	C.	onzzuetone	d der Gebrau	obotovalich	skoit 17)		G	renzzus	tand der	Tragfäh	igkeit ¹⁸⁾	
	G	enzzustant	i del Gebiad	cristaugiici	IKEIL "						_asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, ^{14) 15)}	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,i}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck		2	1 1	1, 2	* Rk.g	-R	Rk,I	. ,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10-4 · m²/kN	10-4 - 1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	g: Verbind	ung in jedem	Untergurt								
0,63	2,50	0,298	11,309	3,825	1,281	6,87	3,25	13,81	0,122	5,42	7,58	9,59
0,75	3,96	0,231	7,119	3,825	1,281	10,07	3,25	29,70	0,134	7,15	10,16	12,84
0,88	6,03	0,195	4,676	3,825	1,281	12,95	3,25	49,19	0,145	9,20	12,02	15,20
1,00	8,43	0,171	3,349	3,825	1,281	15,82	3,25	73,43	0,155	11,25	13,74	17,37
1,13	11,58	0,151	2,438	3,825	1,281	19,13	3,25	87,20	0,166	13,61	15,60	19,72
1,25	15,03	0,136	1,878	3,825	1,281	22,36	3,25	96,80	0,175	15,91	17,32	21,89
Sondert	efestigur	ng: Verbind	ung mit 2 Sci	hrauben od	er verstärkte	r Unterle	gschei	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,63	6,70	0,298	1,305	3,825	0,641	6,87	3,25	13,81	0,560	11,02	7,58	9,59
0,75	10,64	0,231	0,821	3,825	0,641	10,07	3,25	29,70	0,560	14,55	10,16	12,84
0,88	16,20	0,195	0,540	3,825	0,641	12,95	3,25	49,19	0,560	18,72	12,02	15,20
1,00	22,63	0,171	0,386	3,825	0,641	15,82	3,25	73,43	0,560	22,87	13,74	17,37
1,13	31,08	0,151	0,281	3,825	0,641	19,13	3,25	87,20	0,560	27,67	15,60	19,72
1,25	40,35	0,136	0,217	3,825	0,641	22,36	3,25	96,80	0,560	32,36	17,32	21,89

 a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2: "Eingeschränkte Grenzabmaße (S)" für t_N ≥ 0,75 mm, "Normale Grenzabmaße (N)" für t_N = 0,63 mm.


SAB 40(R)/915

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 4 mm

alternative Ausführung mit liniertem Gurt

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

Anlage 1.5.4 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

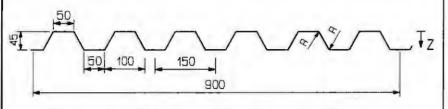
Nenn- Feldmo- blech- ment					Elastis	ch aufi	nehmb	are So	hnittgr	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)		
blech-	ment	End	lauf-	Quer-			'			Line	eare Inte	eraktion				
dicke		lagen	kraft ⁶⁾	kraft		5	Stützim	oment	е			Zwi	ischenau	ıflagerkr	äfte	
t _N M _{c,Rk,F}	= 10 mm	_{a2} = 40 mm		I _{a.B} = 1	I0 mm	I _{a 8} = 6	60 mm		00 mm	l _{aB} = 1	0 mm	l _{a,B} = 6	0 mm	I _{a.B} = 10	00 mm	
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	M° RK,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ Rk,B	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNr	n/m					kN		1	
0,63	1,690	4,80	7,42		1,95	1,56	1,95	1,56	1,95	1,56	11,99	9,59	21,50	17,20	26,17	20,94
0,75	2,409	7,86	11,90		2,87	2,29	2,87	2,29	2,87	2,29	19,64	15,71	34,30	27,44	41,51	33,21
0,88	3,041	10,85	16,21		3,72	2,98	3,72	2,98	3,72	2,98	27,12	21,70	46,54	37,23	56,08	44,87
1,00	3,652	14,00	20,69	n.m.	4,53	3,62	4,53	3,62	4,53	3,62	35,01	28,01	59,22	47,38	71,13	56,90
1,13	4,345	17,84	26,07		5,51	4,41	5,51	4,41	5,51	4.41	44,60	35,68	74,43	59,55	89,10	71,28
1,25	4,932	21,77	31,53		6,39	5,12	6,39	5,12	6,39	5,12	54,42	43,53	89,79	71,83	107,18	85,75

Reststützmomente 8)

	l _{a,i}	= 10 m	m	l _{a,t}	= 60 m	m	l _{a,t}	= 100 m	m	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{e,ek}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R Rk} = 0 für L≤min L
										$M_{RRk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{RRI}$
										M _{R,Rk} = max M _{Rk} für L≥max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-		Verbindur	ng in jede	em ablieg	enden C	Burt mit K	alotte 9)10)	Ve	rbindung	in jedem	anliege	nden Gu	rt ⁹⁾
blech- dicke	ment	Endauf- lagerkraft		Line	are Inte	raktion		Endauf- lagerkraft		MA	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M° Rk,8	M _{c,Rk,B}	R° Rk,B	R _{w,Rk,B}	V _{w,Rk}	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° RK,B	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,63	1,560	7,42	2,11	1,690	18,55	14,84	-	36,01	-	1,690	-	-	36,01
0,75	2,294	11,90	3,01	2,409	29,76	23,81		55,43	-	2,409	-	-	55,43
0,88	2,976	16,21	3,80	3,041	40,51	32,41	-	65,55	(<u>a</u>)	3,041	_	1	65,55
1,00	3,623	20,69	4,56	3,652	51,71	41,37	-	74,88	-	3,652	-	-	74,88
1,13	4,409	26,07	5,43	4,345	65,18	52,15	-	84,98	-	4,345	-	-	84,98
1,25	5,116	31,53	6,17	4,932	78,82	63,06		94,30	-	4,932		-	94,30


SAB 45/900

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positiv- oder Negativlage

Maße in mm, Radien R= 5 mm

Leipzig, den 05.08.2025 er: Bearbeiter:

Leiter: FREISTAAT

Anlage 1.6.1 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

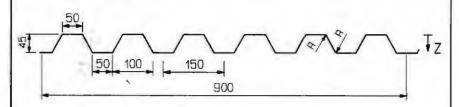
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstüt	zweiten 13)
blech- dicke				nicht redu:	zierter Qu	erschnitt	wirksame	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I+ eff	I' _{eff}	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	4/m	cm²/m	cr	n	cm²/m	cr	n	1	m
0,63	0,069	20,55	20,55	7,35	1,82	2,25	3,50	2,00	2,25	/	
0,75	0,083	28,41	28,41	9,49	1,82	2,25	5,59	1,95	2,25	1	/
0,88	0,097	35,16	35,16	11,22	1,82	2,25	7,56	1,92	2,25	1	9
1,00	0,110	41,62	41,62	12,82	1,82	2,25	9,56	1,90	2,25	/	1
1,13	0,125	48,26	48,26	14,56	1,82	2,25	11,88	1,88	2,25		LX.
1,25	0,138	53,56	53,56	16,16	1,82	2,25	14,15	1,86	2,25		

Schubfeldwerte

	G.	onzzuntano	der Gebrau	chetavaliek	akoit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	enzzustant	uei Gebiau	icristaugiici	INCIL					L	asteinleitu	ing
t _N	T _{b,Gk}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T 16)	L _R 16)	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	14	1 2	1, 1	2	T _{Rk,g} 16)	R	' Rk,I	3		130 mm	280 mm
mm	kN/m	10-4-m/kN	10 ⁻⁴ · m ² /kN	10-4 - 1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m		kN/m	kN	kN
Normalb	efestigur	ıg: Verbindi	ung in jedem	Untergurt								
0,63	7,94	0,305	9,271	3,889	1,050	7,20	3,50	44,00	0,412	3,65	7	
0,75	12,61	0,236	5,836	3,889	1,050	10,55	3,50	56,80	0,451	4,82	1	
0,88	19,20	0,199	3,833	3,889	1,050	13,58	3,50	67,20	0,491	6,21		
1,00	26,80	0,174	2,745	3,889	1,050	16,59	3,50	76,80	0,525	7,58	/	1
1,13	36,82	0,154	1,999	3,889	1,050	20,06	3,50	87,20	0,559	9,18	1	1
1,25	47,81	0,138	1,539	3,889	1,050	23,46	3,50	96,80	0,589	10,73		/
Sonderb	efestigur	ıg: Verbindı	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	egsche	be in jed	lem Unte	ergurt ²⁰⁾		
0,63	10,46	0,305	1,435	3,889	0,525	7,20	3,50	44,00	0,637	15,69	У	
0,75	16,61	0,236	0,903	3,889	0,525	10,55	3,50	56,80	0,637	20,71	/	1
0,88	25,29	0,199	0,593	3,889	0,525	13,58	3,50	67,20	0,637	26,66	1	,
1,00	35,31	0,174	0,425	3,889	0,525	16,59	3,50	76,80	0,637	32,57		1
1,13	48,51	0,154	0,309	3,889	0,525	20,06	3,50	87,20	0,637	39,40	1	
1,25	62,98	0,138	0,238	3,889	0,525	23,46	3,50	96,80	0,637	46,08	1	

 a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2: "Eingeschränkte Grenzabmaße (S)" für t_N ≥ 0,75 mm, "Normale Grenzabmaße (N)" für t_N = 0,63 mm.


SAE 45/900

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positiv- oder Negativlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f_{vk} =

320 N/mm²

Anlage 1.6.2 zum Prüfbescheid ALS TYPENENTWURF in haustatischer Hinsicht genrüft

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

ter: Bearbeiter: SACHSEN SACHSEN

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

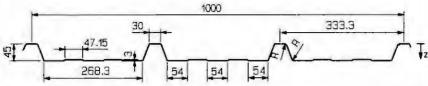
Nenn-						Elastis	ch aufr	nehmb	are So	hnittgr	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	End	10.000	Quer-						Line	eare Inte	eraktion	,			
dicke		lagen	kraft ⁶⁾	kraft			Stützm	oment	е			Zw	ischenau	ıflagerkr	äfte	
		l _{a1} = 10 mm	I _{a2} = 40 mm		l _{aB} =	I0 mm	I _{a B} = 6	80 mm	I _{a.9} = 1	00 mm	I _{a B} = 1	0 mm	1 _{a.B} = 6	0 mm	I _{a B} = 1(00 mm
t _N	t _N M _{c,Rk,F} R _{w,Rk,A}	,Rk,A	$V_{w,Rk}$	M° RK,B	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	M ^D _{Rk,8}	M _{c.Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	
mm	kNm/m	kN		kN/m			kNr	n/m					kN	/m		L.
0,63	2,351	5,46	8,45		2,94	2,35	2,94	2,35	2,94	2,35	13,65	10,92	24,47	19,58	29,79	23,83
0,75	3,352	8,94	13,55		4,19	3,35	4,19	3,35	4,19	3,35	22,36	17,89	39,05	31,24	47,26	37,81
0,88	4,245	12,35	18,45		5,31	4,24	5,31	4,24	5,31	4,24	30,87	24,70	52,98	42,38	63,85	51,08
1,00	5,121	15,94	23,55	n.m.	6,40	5,12	6,40	5,12	6,40	5,12	39,85	31,88	67,42	53,94	80,98	64,78
1,13	6,116	20,31	29,68		7,64	6,12	7,64	6,12	7,64	6,12	50,78	40,62	84,74	67,79	101,44	81,15
1,25	7,067	24,78	35,89		8,83	7,07	8,83	7,07	8,83	7,07	61,95	49,56	102,22	81,78	122,02	97,62

Reststützmomente 8)

	l _{a,i}	= 10 m	ım	l _{a,l}	_B = 60 m	ım	l _{a,E}	₃ = 100 m	im	Reststützmomente M _{R,Rk}
T _N	min L	max L	$\max \mathbf{M}_{\mathrm{R},\mathrm{Rk}}$	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R.Rk} = 0 für L≤min L
										$M_{RRk} = \frac{L - \min L}{\max M_{RRk}}$
										max L - min L
										M _{RRk} = max M _{Rk} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-		Verbindur	ng in jede	em ablieg	jenden (3urt mit K	alotte 9)10)	Ve	rbindung	in jedem	anliege	nden Gu	ırt ⁹⁾
blech- dicke	ment	Endauf- lagerkraft		Line	are Inte	raktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° Rk,B	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,63	2,351	8,45	2,938	2,351	21,12	16,89	-	40,10	-	2,351	-	-	40,10
0,75	3,352	13,55	4,191	3,352	33,88	27,10	-	66,82	-	3,352	-	-	66,82
0,88	4,245	18,45	5,306	4,245	46,12	36,90		91,94	-	4,245	- 2	-	91,94
1,00	5,121	23,55	6,401	5,121	58,87	47,10		105,06	-	5,121	-	-	105,06
1,13	6,116	29,68	7,645	6,116	74,21	59,36	-1	119,26	-	6,116		-	119,26
1,25	7,067	35,89	8,834	7,067	89,73	71,79	-	132,36	-	7,067		-	132,36
	1	1								1			


SAB 45KD/1000

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 4 mm

Anlage 1.7.1 zum Prüfbescheid

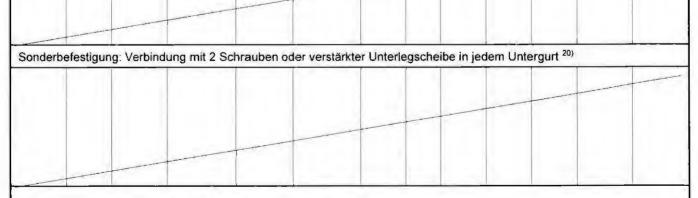
ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f_{y,k} = 320 N/mm²


Maßgebende Querschnittswerte

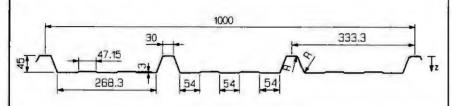
Nenn-	Eigenlast	Biegu	ıng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten ¹³⁾
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	1 ⁺ eff	l' _{eff}	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	4/m	cm²/m	cr	n	cm²/m	cr	n		m
0,63	0,062	14,68	8,31	6,45	1,53	3,62	1,58	1,98	2,37	-	-
0,75	0,074	19,51	11,52	8,33	1,53	3,62	2,52	1,93	2,41	2,28	2,85
0,88	0,087	23,07	14,31	9,85	1,53	3,62	3,41	1,90	2,44	2,70	3,37
1,00	0,099	26,36	17,01	11,26	1,53	3,62	4,26	1,87	2,50	3,08	3,85
1,13	0,112	29,91	20,05	12,78	1,53	3,62	5,25	1,83	2,56	3,50	4,37
1,25	0,124	33,19	22,95	14,19	1,53	3,62	6,22	1,81	2,61	3,88	4,85

Schubfeldwerte

			der Gebrau	ah atau aliah	strait 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	U	renzzustano	der Gebrau	icnstaugiici	ikeil "					1	asteinleitu	ing
t _N	T	K. 14) 15)	K ₂ 14) 15)	K*, 15)	K* 15)	T 16)	16)	Т	K, ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} ²¹⁾	für a ≥
	b,Ck	ry .	112	IN 1	1 2	Rk,g	□ _R	Rk,I	1 3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10-4 · m ² /kN	10-4 · 1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN

Normalbefestigung: Verbindung in jedem Untergurt

 a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2: "Eingeschränkte Grenzabmaße (S)" für t_N ≥ 0,75 mm. "Normale Grenzabmaße (N)" für t_N = 0,63 mm.


SAB 45KD/1000

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 4 mm

Anlage 1.7.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 eiter: Bearbeiter

Nennstreckgrenze des Stahlkernes f_{vk} = 320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

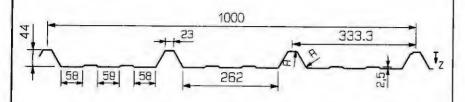
Nenn-	Feldmo-				1	Elastis	ch aufr	nehmb	are Sc	hnittgr	ößen an	Zwische	nauflage	rn ^{1) 2) 4) !}	5) 7)	
blech-	ment	End		Quer-						Line	eare Inte	raktion				
dicke		lageri	kraft ⁶⁾	kraft		5	Stützm	oment	е			Zwi	schenau	ıflagerkrá	ifte	
		_{a1} = 10 mm	_{a2} = 40 mm		l _{a.B} = 1	10 mm	I _{a,B} = 6	0 mm	I _{a,B} = 1	00 mm	I _{a,B} = 1	0 mm	I _{a B} = 6	0 mm	(_{a B} = 1	00 mm
t _N	t _N M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ _{RKB}	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	M ⁰ Rk,8	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN		kN/m			kNr	n/m					kN			
0,63	1,055	2,56	3,97		1,25	1,00	1,25	1,00	1,25	1,00	6,41	5,13	11,49	9,19	13,99	11,19
0,75	1,507	4,20	6,36		1,81	1,44	1,81	1,44	1,81	1,44	10,50	8,40	18,34	14,67	22,19	17,76
0,88	1,897	5,80	8,66		2,30	1,84	2,30	1,84	2,30	1,84	14,50	11,60	24,88	19,90	29,98	23,99
1,00	2,216	7,49	11,06	n,m,	2,79	2,23	2,79	2,23	2,79	2,23	18,72	14,97	31,66	25,33	38,03	30,42
1,13	2,536	9,54	13,94		3,38	2,70	3,38	2,70	3,38	2,70	23,85	19,08	39,79	31,84	47,64	38,11
1,25	2,835	11,64	16,86		3,92	3,14	3,92	3,14	3,92	3,14	29,09	23,27	48,01	38,40	57,31	45,84

Reststützmomente 8)

	l _{a,t}	_B = 10 m	ım	l _{a, E}	= 60 m	ım	l _{a,E}	= 100 m	nm	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	mîn L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										I will I
										$M_{RRk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{RRk}$
										M _{R Rk} = max M _{R k} für L≥max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

	Feldmo-	Verbindur	ng in jede	em ablieg	enden C	Gurt mit K	alotte 9)10)	Ve	rbindung	in jedem	anliege	nden Gu	rt ⁹⁾
blech- dicke	ment	Endauf- lagerkraft		Line	are Inte	raktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	MI° Rk,B	M _{c,Rk,B}	$R^{\circ}_{_{Rk,B}}$	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,63	0,996	3,97	1,319	1,055	9,92	7,93	-	19,23	-	1,055	-	-	19,23
0,75	1,445	6,36	1,884	1,507	15,91	12,73	-	32,05	-	1,507		-	32,05
0,88	1,841	8,66	2,371	1,897	21,66	17,33	-	40,97	-	1,897	-	-	40,97
1,00	2,232	11,06	2,769	2,216	27,65	22,12	-	46,80	_	2,216	-	-	46,80
1,13	2,704	13,94	3,171	2,536	34,85	27,88		53,12	-	2,536	_	-	53,12
1,25	3,137	16,86	3,544	2,835	42,14	33,71	-	58,96	-	2,835	-	-	58,96
								1					


SAB 45KD/1000-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.8.1 zum Prüfbescheid

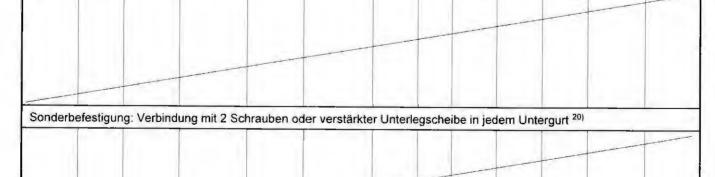
ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter;

Nennstreckgrenze des Stahlkernes f_{v,k} = 320 N/mm²


Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ung ^{†1)}		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	l'eff	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	Lgr	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	cr	n	b)	b)
0,63	0,062	13,43	7,52	6,33	1,46	3,59	1,55	1,95	2,36	2,10	2,63
0,75	0,074	17,32	10,41	8,17	1,46	3,59	2,45	1,89	2,43	2,65	3,31
0,88	0,087	20,49	12,91	9,66	1,46	3,59	3,27	1,85	2,51	3,14	3,93
1,00	0,099	23,41	15,34	11,04	1,46	3,59	4,09	1,81	2,56	3,60	4,50
1,13	0,112	26,57	18,06	12,53	1,46	3,59	5,07	1,77	2,62	4,07	5.09
1,25	0,124	29,49	20,66	13,91	1,46	3,59	6,03	1,74	2,66	4,52	5,65

Schubfeldwerte

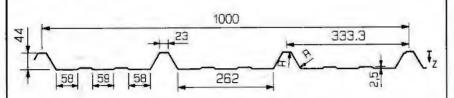
	G	renzzustano	d der Gebrau	ichstaudlich	rkeit 17)		G	Grenzzus	tand der	Tragfäh	igkeit 18)	
	,-			onstaught	incit						Lasteinleitu	ing
N	T _{b.Ck}	K, 14) 15)	K. 14) 15)	K 15)	K* 15)	T 16)	16)	T	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	D,CR		2		2	Rk.g	⁻R	Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10-4 · m ² /kN	10-4-1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN

Normalbefestigung: Verbindung in jedem Untergurt

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2:

"Eingeschränkte Grenzabmaße (S)" für $t_N \ge 0.75$ mm, "Normale Grenzabmaße (N)" für $t_N = 0.63$ mm.

b) Grenzstützweite in m bei Begehung im Untergurt


SAB 45KD/1000-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.8.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

eiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f_{vk} = 320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

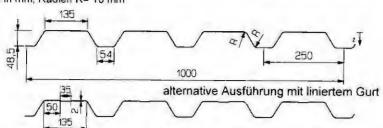
Nenn-	Feldmo-					Elastis	ch aufr	nehmb	are Sc	hnittgrö	ößen an	Zwische	nauflage	rn ^{1) 2) 4) 5}	5) 7)	
blech-	ment	End		Quer-						Line	eare Inte	raktion				
dicke		lagerl	craπ "	kraft		5	Stützm	oment	e			Zw	ischenau	ıflagerkrá	ifte	
	t _N M _{c,Rk,F}	= 10 mm	1 _{a2} = 40 mm			0 mm	l _{a8} = 6	60 mm	I _{a.B} = 1	00 mm	_{a,B} = 1	0 mm	l _{a,B} = 6	0 mm	_{a B} = 10	00 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{RK,B}	R _{w,Rk,B}	$R^0_{Rk,B}$	R _{w,Rk,B}
mm	kNm/m		/m	kN/m			kNr	n/m					kN	/m		
0,63	1,028	2,47	3,81		1,19	0,96	1,19	0,96	1,19	0,96	6,16	4,93	11,05	8,84	13,45	10,76
0,75	1,428	4,04	6,12		1,71	1,37	1,71	1,37	1,71	1,37	10,10	80,8	17,63	14,11	21,34	17,07
0,88	1,717	5,58	8,33		2,18	1,74	2,18	1,74	2,18	1,74	13,94	11,15	23,92	19,14	28,83	23,06
1,00	1,984	7,20	10,63	n.m.	2,63	2,11	2,63	2,11	2,63	2,11	17,99	14,40	30,44	24,35	36,56	29,25
1,13	2,272	9,17	13,40		3,18	2,54	3,18	2,54	3,18	2,54	22,93	18,34	38,26	30,61	45,80	36,64
1,25	2,540	11,19	16,21		3,68	2,95	3,68	2,95	3,68	2,95	27,97	22,38	46,15	36,92	55,10	44,08
						4										

Reststützmomente 8)

1,	= 10 m	m	l _{a,6}	= 60 m	ım	a,E	₃ = 100 m	ım	Reststützmomente M _{R.Rk}
min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
									M _{R.Rk} = 0 für L≤min L
									L - min L may M
									$M_{RRK} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{RR}$
									M _{RRk} = max M _{Rk} für L≥ max L
	min L	min L max L		min L max L max M _{R,Rk} min L	min L max L max M _{R,Rk} min L max L	min L max L max M _{R,Rk} min L max L max M _{R,Rk}	min L max L max M _{R,Rk} min L max L max M _{R,Rk} min L	min L max L max M _{R.Rk} min L max L max M _{R.Rk} min L max L	min L max L max M _{R,Rk} min L max L max M _{R,Rk} min L max L max M _{R,Rk}

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	lech- ment	Verbindur	ng in jede	em ablieg	enden G	Burt mit K	alotte 9)10)	Vei	rbindung	in jedem	anliege	nden Gui	t ⁹⁾
blech- dicke	ment	Endauf- lagerkraft		Line	are Inte	raktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° Rk,B	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M° _{Rk,B}	M _{c,Rk,B}	R° RK,B	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,63	0,955	3,81	1,284	1,028	9,54	7,63	-	18,15	-	1,028	-	-	18,15
0,75	1,370	6,12	1,785	1,428	15,30	12,24	-	30,25	-	1,428	-	-	30,25
0,88	1,742	8,33	2,146	1,717	20,83	16,66	_	40,60	÷	1,717	- 1	-	40,60
1,00	2,108	10,63	2,481	1,984	26,58	21,27	-	46,39	4	1,984	4	-	46,39
1,13	2,542	13,40	2,841	2,272	33,50	26,80	-	52,66	-	2,272	-	-	52,66
1,25	2,945	16,21	3,175	2,540	40,52	32,41	-	58,44	-	2,540	-	-	58,44
1,25	2,945	16,21	3,175	2,540	40,52	32,41	-	58,44	-	2,540	-	-	


SAB 50(R)/1000

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 10 mm

Nennstreckgrenze des Stahlkernes f, =

320 N/mm²

Anlage 1.9.1 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

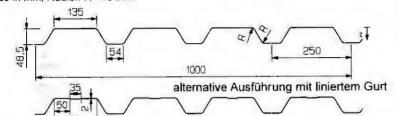
Leipzig, den 05.08.2025 Bearbeiter: FREISTAAT

SACHSEN

Nenn-	Eigenlast		ung ¹¹⁾		Norr	malkraftbe	anspruchu	ıng		Grenzstü	tzweiten ¹³⁾
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	+ eff	J- eff	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,63	0,062	15,82	20,88	6,58	1,98	1,77	2,18	2,15	2,38	-	-
0,75	0,074	22,02	29,06	8,49	1,98	1,77	3,51	2,11	2,37	0.96	1,20
0,88	0,087	27,44	36,15	10,05	1,98	1,77	4,78	2,08	2,35	1,99	2,49
1,00	0,099	32,70	43,00	11,48	1,98	1,77	6,09	2.06	2,34	2.95	3,69
1,13	0,112	38,64	50,70	13,03	1,98	1,77	7,64	2,04	2,33	3,35	4,19
1,25	0,124	44,33	56,60	14,47	1,98	1,77	9,18	2,02	2,31	3,72	4,65

Schubfeldwerte

	G	renzzustano	d der Gebrau	ichstaudlich	nkeit 17)		C	Grenzzus	stand der	Tragfähi	igkeit ¹⁸⁾	
t _N			del Oction	ici istaugiici	inen -					L	asteinleitu	ing
N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	J. J.		4	1	2	Rk,g	R	KK,I	- 3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10-4 m ² /kN	10 ⁻⁴ ·1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbinde	ung in jedem	Untergurt								
0,63	1,87	0,273	18,691	3,500	1,750	7,20	3,62	10,73	0,203	2,67	1	
0,75	2,97	0,212	11,765	3,500	1,750	8,65	4,00	23,08	0,223	3,52		
0,88	4,53	0,179	7,728	3,500	1,750	11,13	4,00	38,22	0,242	4,54	1	,
1,00	6,32	0,157	5,534	3,500	1,750	13,60	4,00	57,05	0,259	5,54		
1,13	8,68	0,138	4,029	3,500	1,750	16,45	4,00	83,51	0,276	6,70		
1,25	11,28	0,124	3,103	3,500	1,750	19,23	4,00	96,80	0,291	7,84	1	
Sonderb	efestigur	ıg: Verbindu	ung mit 2 Sch	nrauben od	er verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,63	1,76	0,273	14,840	3,500	0,875	7,20	3,62	10,73	0,318	5,32	- 1	
0,75	2,80	0,212	9,342	3,500	0,875	8,65	4,00	23,08	0,318	7,02	1	1
0,88	4,27	0,179	6,136	3,500	0,875	11,13	4,00	38,22	0,318	9,04	/	
1,00	5,96	0,157	4,394	3,500	0,875	13,60	4,00	57,05	0,318	11,04		/
1,13	8,19	0,138	3,199	3,500	0,875	16,45	4,00	83,51	0,318	13,36		
1,25	10,63	0,124	2,464	3,500	0,875	19,23	4,00	96,80	0,318	15,62	1	


a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2: "Eingeschränkte Grenzabmaße (S)" für $t_N \ge 0.75$ mm. "Normale Grenzabmaße (N)" für $t_N = 0.63$ mm.

SAB 50(R)/1000

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Maße in mm, Radien R= 10 mm

Nennstreckgrenze des Stahlkernes fyk =

320 N/mm²

Anlage 1.9.2 zum Prüfbescheid

ALS TYPENENTWURF in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen
Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter: SACHSEN

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-					1	Elastis	ch aufr	nehmb	are So	hnittgr	ößen an	Zwische	nauflage	rn 1) 2) 4) 5	6) 7)	
blech-	ment	End		Quer-						Line	eare Inte	raktion				
dicke		lageri	сгаπ "	kraft		5	Stützm	oment	е			Zwi	schenau	ıflagerkrä	ifte	
t _N M _{c,Rk,F}		= 10 mm	I _{a2} = 40 mm) _{a,8} = 1	10 mm	I _{a,B} = 6	60 mm	l _{a,B} = 1	00 mm	l _{a,B} = 1	0 mm	I _{a,B} = 6	0 mm	I _{a,B} = 1(00 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	$V_{w,Rk}$	Mº Rk,B	M _{c,Rk,B}	Mº Rk, B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNr	n/m					kN	l/m		
0,63	1,638	2,55	3,95		2,04	1,63	2,04	1,63	2,04	1,63	6,38	5,10	11,44	9,15	13,92	11,14
0,75	2,368	4,36	6,60		3,18	2,55	3,18	2,55	3,18	2,55	10,90	8,72	19,03	15,23	23,03	18,43
0,88	3,038	6,15	9,19		4,02	3,22	4,02	3,22	4,02	3,22	15,39	12,31	26,40	21,12	31,82	25,45
1,00	3,715	8,07	11,92	n.m.	4,84	3,87	4,84	3,87	4,84	3,87	20,17	16,13	34,12	27,30	40,98	32,78
1,13	4,511	10,41	15,22		5,77	4,62	5,77	4,62	5,77	4,62	26,03	20,83	43,44	34,75	52,00	41,60
1,25	5,293	12,83	18,58		6,67	5,33	6,67	5,33	6,67	5,33	32,07	25,65	52,91	42,33	63,16	50,53
					1											

Reststützmomente 8)

	l _a	_B = 10 m	ım	l _{a,t}	₃ = 60 m	m	l _{a.t}	= 100 m	m	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
							h			L - min L mov M
										M _{RRk} = L - min L max L - min L
	سياد									M _{R,Rk} = max M _{R,k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-	ech- ment	Ve	rbindung	g in jeder	n anlieg	enden Gu	irt	Ver	bindung	in jedem	2. anlies	genden G	urt
blech- dicke		Endauf- lagerkraft		M/\	V- Intera	ıktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,63	1,628	23,30	-	1,638	-	-	23,30	11,65	-	0,819	-	-	11,65
0,75	2.547	38,82	- 1	2,368	-	- 1	38,82	19,41	-	1,184	-	-	19,41
0.88	3,215	54,34	_	3,038	2	-	54,34	27,17		1,519	-	- 1	27,17
1,00	3,871	67,22	-	3,715	-	-	67,22	33,61	-	1,858	-	-	33,61
1,13	4,618	76,31	-	4,511	-	-	76,31	38,16	-	2,256	-	- 1	38,16
1,25	5,334	84,70	-	5,293	-	-	84,70	42,35	-	2,646	-	-	42,35

SAB 50(R)/1000

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativiage

Maße in mm, Radien R= 10 mm

1000

1000

135

alternative Ausführung mit liniertem Gurt

Leipzig, den 05.08.2025

Anlage 1.9.3 zum Prüfbescheid
ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik

Leiter: FREISTAAT SACHSEN

Bearbeiter:

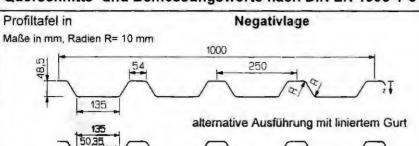
Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ıng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstür	tzweiten 13)
blech- dicke				nicht redu:	zierter Qu	erschnitt	wirksame	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I*eff	I-ett	Ag	i,	Z _g	A _{eff}	ien	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,63	0,062	20,88	15,82	6,58	1,98	3,08	2,18	2,15	2,47	-	-
0,75	0,074	29,06	22,02	8,49	1,98	3,08	3,51	2,11	2,48	1,56	1,95
88,0	0,087	36,15	27,44	10,05	1,98	3,08	4,78	2,08	2,50	2,39	2,99
1,00	0,099	43,00	32,70	11,48	1,98	3,08	6,09	2,06	2,51	3,15	3,94
1,13	0,112	50,70	38,64	13,03	1,98	3,08	7,64	2,04	2,52	3,58	4,47
1,25	0,124	56,60	44,33	14,47	1,98	3,08	9,18	2,02	2,54	3,97	4,96

Schubfeldwerte


	G	onzzueton	d der Gebrau	rcheta unlich	kait 17)		G	renzzus	tand der	Tragfäh	igkeit 18)	
	G	enzzustant	dei Gebiat	ichstaugher	IKEIL '					1	Lasteinleitu	ıng
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K* 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,i}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	1.4	. `2	1 1	2	Rk.g	T _R	- Rk,I	• `3		130 mm	280 mm
mm	kN/m	104 m/kN	10-4 · m ² /kN	10-4-1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,63	2,06	0,273	19,683	3,500	1,750	7,25	3,61	10,73	0,138	4,14		
0,75	3,28	0,212	12,390	3,500	1,750	8,65	4,00	23,08	0,152	5,47		
0,88	4,99	0,179	8,138	3,500	1,750	11,13	4,00	38,22	0,165	7,03		100
1,00	6,97	0,157	5,828	3,500	1,750	13,60	4,00	57,05	0,176	8,59	1	/
1,13	9,57	0,138	4,243	3,500	1,750	16,45	4,00	83,51	0,188	10,40		
1,25	12,43	0,124	3,268	3,500	1,750	19,23	4,00	96,80	0,198	12,16		1
Sonderb	efestigur	ng: Verbind	ung mit 2 Sci	hrauben od	er verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,63	6,52	0,273	1,606	3,500	0,875	7,25	3,61	10,73	0,480	11,11		
0,75	10,36	0,212	1,011	3,500	0,875	8,65	4,00	23,08	0,480	14,67		/
0,88	15,78	0,179	0,664	3,500	0,875	11,13	4,00	38,22	0,480	18,88		
1,00	22,03	0,157	0,476	3,500	0,875	13,60	4,00	57,05	0,480	23,06		
1,13	30,26	0,138	0,346	3,500	0,875	16,45	4,00	83,51	0,480	27,90	/	
1,25	39,29	0,124	0,267	3,500	0,875	19,23	4,00	96,80	0,480	32,63	/	

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2:

[&]quot;Eingeschränkte Grenzabmaße (S)" für $t_N \ge 0.75$ mm. "Normale Grenzabmaße (N)" für $t_N = 0.63$ mm.

SAB 50(R)/1000

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1.9.4 zum Prüfbescheid
ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: FREISTAAT Bearbeiter:

Nennstreckgrenze des Stahlkernes f

320 N/mrm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

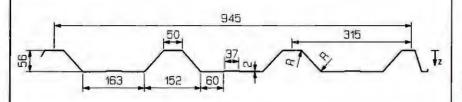
Nenn-	Feldmo-				1	Elastis	ch aufi	nehmb	are So	hnittgr	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	End	lauf-	Quer-						Line	eare Inte	eraktion				
dicke		lagen	kraft ⁶⁾	kraft		5	Stützm	oment	е			Zw	ischenac	uflagerkra	äfte	
	t _N M _{c,Rk,F}	_{a1} =	1 _{a2} = 40 mm		I _{a,B} = 1	10 mm		60 mm	 _{a8} = 1	00 mm	l _{a8} = 1	0 mm	l _{a8} = 6	60 mm) _{a 8} = 11	00 mm
t _N	M _{c,Rk,F}	R"	Rk,A	V _{w,Rk}	M ⁰ _{RK,B}	M _{c.Rk.B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ^o Rk,B	M _{c,Rk,B}	R ^o _{RK,B}	R _{w,Rk,B}	R ^o _{Rk,B}	R _{w.Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,8}
mm	kNm/m	kN	l/m	kN/m			kNr	n/m					kN	l/m		
0,63	1,628	2,55	3,95		2,05	1,64	2,05	1,64	2,05	1,64	6,38	5,10	11,44	9,15	13,92	11,14
0,75	2,547	4,36	6,60		2,96	2,37	2,96	2,37	2,96	2,37	10,90	8,72	19,03	15,23	23,03	18,43
0,88	3,215	6,15	9,19	1	3,80	3,04	3,80	3,04	3,80	3,04	15,39	12,31	26,40	21,12	31,82	25,45
1,00	3,871	8,07	11,92	n.m.	4,64	3,72	4,64	3,72	4,64	3,72	20,17	16,13	34,12	27,30	40,98	32,78
1,13	4,618	10,41	15,22		5,64	4,51	5,64	4,51	5,64	4,51	26,03	20,83	43,44	34,75	52,00	41,60
1,25	5,334	12,83	18,58		6,62	5,29	6,62	5,29	6,62	5,29	32,07	25,65	52,91	42,33	63,16	50,53

Reststützmomente 8)

	l _{a,6}	= 10 m	m	l _{a s}	= 60 m	m	l _{a,t}	_s = 100 m	m	Reststützmomente M _{R.Rk}
I,	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R Rk} = 0 für L≤min L
										M _{R,Rk} = L - min L max M _{R,R}
										max L - min L
										M _{R.Rk} = max M _{R.k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn- blech- dicke	ment	Verbindung in jedem abliegenden Gurt mit Kalotte 9)10)						Verbindung in jedem anliegenden Gurt 9)						
		Endauf- lagerkraft	Lineare Interaktion					Endauf- lagerkraft	M/V- Interaktion					
		R _{w,Rk,A}	M° RK,B	M _{c,Rk,B}	R° Rk,B	R _{w,Rk,B}	V _{w,Rk}	R _{w,Rk,A}	M° Rk,B	M _{c.Rk,B}	R° RK,B	R _{w,Rk,B}	V _{w,Rk}	
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	
0,63	1,638	3,95	2,04	1,628	9,87	7,89	-	23,30	-	1,628	-	-	23,30	
0,75	2,368	6,60	3,18	2,547	16,51	13,21	-	38,82	-	2,547		-	38,82	
0,88	3,038	9,19	4,02	3,215	22,99	18,39		54.34	-	3,215		- 1	54,34	
1,00	3,715	11,92	4,84	3,871	29,79	23,83	-	67,22	-	3,871		-	67,22	
1,13	4,511	15,22	5,77	4,618	38,04	30,43	-	76,31	-	4,618	-	-	76,31	
1,25	5,293	18,58	6,67	5,334	46,45	37,16	-	84,70	-	5,334		-	84,70	
1,25	3,293	10,50	0,07	5,554	40,43	37,10	•	04,70	_	5,334		_		


SAB 58KD/945-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

Anlage 1.10.1 zum Prüfbescheid
ALS TYPENENTWURF

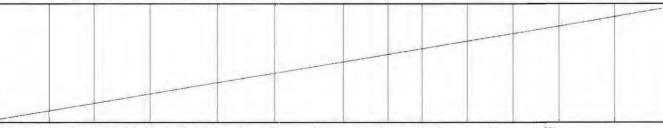
in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Leiter: FREISTAAT Bearbo

Nennstreckgrenze des Stahlkernes f_{v.k} =

320 N/mm²


Maßgebende Querschnittswerte

Nenn- blech- dicke a)	Eigenlast	Biegung ¹¹⁾			Grenzstützweiten 13)						
				nicht reduzierter Querschnitt			wirksamer Querschnitt 12)			Einfeld- träger	Mehrfeld träger
		j+ eff	[-	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm⁴/m		cm²/m	cm		cm²/m	cm			m
0,63	0,066	17,09	18,65	6,34	2,21	3,67	1,73	2,58	2,86	1,19	1,49
0,75	0,079	28,48	25,72	8,19	2,21	3,67	2,81	2,53	2,88	2,00	2,50
0,88	0,092	36,00	31,88	9,69	2,21	3,67	3,86	2,49	2,90	3,12	3,90
1,00	0,105	42,94	37,86	11,07	2,21	3,67	4,94	2,46	2,92	4,15	5,19

Schubfeldwerte

		constantant	dor Cobra	Grenzzustand der Tragfähigkeit 18)								
t _N	Grenzzustand der Gebrauchstauglichkeit ¹⁷⁾								Lasteinleitung			
	T _{b,Gk}	K, 14) 15)	K ₂ ^{14) 15)}	K*, 15)	K* ₂ 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,i}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
											130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m ² /kN	10⁴-1/kN	10 ⁻⁴ ·m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN

Normalbefestigung: Verbindung in jedem Untergurt

Sonderbefestigung: Verbindung mit 2 Schrauben oder verstärkter Unterlegscheibe in jedem Untergurt 20)

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2: "Eingeschränkte Grenzabmaße (S)" für t_N ≥ 0,75 mm, "Normale Grenzabmaße (N)" für t_N = 0,63 mm.

SAB 58KD/945-S

Anlage 1.10.2 zum Prüfbescheid
ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

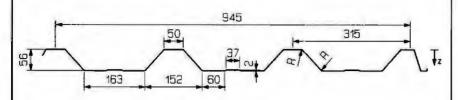
Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

FREISTAAT

SACHSEN

Leiter:


Bearbeiter:

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-		Endaufla	gerkraft ⁽	5)	Elast	tisch auf	nehmbar	e Schnit	tgrößen a	an Zwisc	henaufla	gern ^{1) 2)}	4) 5) 7)
blech-	ment			gomon		Quer-			L	ineare Ir	nteraktio	on		
dicke						kraft		Stützm	omente		Zw	rischenau	uflagerkr	äfte
		I _{a,A1} = 10 mm	I _{a.A2} = 40 mm	I _{a,A1} = 10 mm	I _{a,A2} = 40 mm		I _{a,B} = 4	10 mm	I _{a B} = 1	00 mm	_{a,B} = 4	10 mm) _{a,B} = 1	00 mm
t _N	M _{c,Rk,F}			M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}						
mm	kNm/m			l/m		kN/m		kNr	n/m			kN	l/m	
0,63	1,60	2,44	7,05	2,44	3,69		1,43	1,09	1,91	1,53	8,99	4,74	13,30	10,64
0,75	2,66	3,99	11,74	3,99	6,16		2,39	1,81	3,09	2,48	14,99	7,91	21,10	16,88
0,88	3,54	5,51	16,42	5,51	9,50	n.m.	3,81	2,58	3,93	3,15	16,84	9,41	28,51	22,81
1,00	4,35	7,12	20,74	7,12	12,59		5,13	3,30	4,77	3,82	18,52	10,79	36,16	28,93
										1				

Reststützmomente 8)

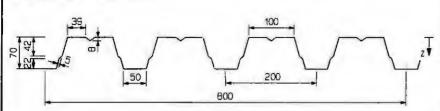
	l _a ,	= 40 mm		l _{a,6}	= 100 mm		Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	
0,63	3,42	4,21	0,59			/	M _{R.Rk} = 0 für L≤min L
0,75	3,42	4,21	0,99				
0,88	3,01	3,82	1,48				$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
1,00	2,82	3,65	1,94			1	max L - min L
				<i>y</i>			M = may M = 60-1 S may 1
							M _{R,Rk} = max M _{R,k} für L≥max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-	Feldmo-	Ve	erbindung	in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M° _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,63	1,53	12,18	-	1,49	-	-	12,18	6,09	-	0,75		-	6,09
0,75	2,48	26,21	12	2,45	4	-	26,21	4,25	_	1,23		1.2	13,10
0,88	3,15	37,67	- 1	3,42		_	37,67	7,74	_	1,71		-	18,83
1,00	3,82	49,20	-	4,12	-	-	49,20	8,56	-	2,06	_	-	24,60

Fußnoten siehe Beiblatt 1/2

Stand: 16. Mai 2024


SAB 70R/800

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.11.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: FREISTAAT Bearbeiter:

SACHSEN

Nennstreckgrenze des Stahlkernes f_{y,k} = 320 N/mm²

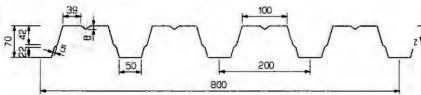
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ung ¹¹⁾		Norr	malkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksame	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	I- eff	A _g	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	i⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,70	0,088	71,5	67,1	9,93	2,74	2,92	5,46	2,91	3,07	1	XI.
0,75	0,094	78,1	73,4	10,68	2,74	2,92	6,27	2,89	3,10	,'	
0.88	0,110	95,1	90,5	12,64	2,74	2,92	8,40	2,86	3,04	/	
1,00	0,125	108,7	106,9	14,44	2,74	2,92	10,52	2,84	3,00	/	
1,13	0,141	123,3	123,3	16,39	2,74	2,92	12,97	2,82	2,97		
1,25	0,156	136,9	136,9	18,19	2,74	2,92	15,30	2,81	2,95		

Schubfeldwerte

	G	enzzuetano	d der Gebrau	chetaualich	okait 17)		G	irenzzus	tand der	Tragfähi	gkeit 18)	
	G,	CHZZUSIANI	dei Gebiau	cristatigiici	INCIL					L	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, ¹⁵⁾	K*, 15)	T _{Rk,g} 16)	L 16)	T _{Rk,I}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	füra≥
	D,CK	- 1	- 2	1	2	- Rk,g	L _R 's,	KK,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10-4 - m ² /kN	10⁴ ·1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbinde	ung in jedem	Untergurt						-7-3		
0,70	2,88	0,280	20,864	4,375	1,400	11,29	4,50	33,79	0,387	3,04		
0,75	3,46	0,260	17,382	4,375	1,400	12,59	4,50	42,06	0,401	3,39	/	
0.88	5,27	0,220	11,417	4,375	1,400	16,20	4,50	67,20	0,436	4,36	1	
1,00	7,36	0,193	8,177	4,375	1,400	19,79	4,50	76,80	0,466	5,33		
1,13	10,11	0,170	5,952	4,375	1,400	23,93	4,50	87,20	0,497	6,44		
1,25	13,13	0,153	4,585	4,375	1,400	27,98	4,50	96,80	0,524	7,54		,
Sonderb	efestigur	ng: Verbindi	ung mit 2 Sci	hrauben od	er verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,70	2,72	0,280	12,877	4,375	0,700	11,29	4,50	33,79	0,640	7,40	- 7	
0,75	3,26	0,260	10,728	4,375	0,700	12,59	4,50	42,06	0,640	8,26	v	
0,88	4,97	0,220	7,046	4,375	0,700	16,20	4,50	67,20	0,640	10,63	1	
1,00	6,94	0,193	5,046	4,375	0,700	19,79	4,50	76,80	0,640	12,99		
1,13	9,53	0,170	3,674	4,375	0,700	23,93	4,50	87,20	0,640	15,71		
1,25	12,37	0,153	2,829	4,375	0,700	27,98	4,50	96,80	0,640	18,38		

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 70R/800

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Leipzig, den 05.08.2025 Leiter: FREISTAAT ACHSEN

Bearbeiter:

Anlage 1.11.2 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

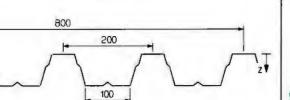
Nenn-	Feldmo-				{	Elastis	ch aufr	nehmb	are Sc	hnittgr	ßen an	Zwische	nauflage	rn 1) 2) 4)	5) 7)	
blech-	ment	End		Quer-						Line	are Inte	eraktion				
dicke		lager	crant *	kraft		5	Stützm	oment	е			Zw	ischenau	ıflagerkr	äfte	
t _N		_{a1} = 10 mm	_{a2} = 40 mm		l _{a,e} = 1	0 mm	l _{a 8} = 6	0 mm	I _{a,B} = 1	00 mm	l _{a,e} = 1	0 mm	I _{a,8} = 6	0 mm	I _{a,8} = 10	00 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w.Rk}	Mº Rk,B	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk.B}
mm	kNm/m	kN	/m	kN/m			kNr	n/m					kN	l/m		
0,70	5,86	7,54	11,49		5,69	4,55	5,69	4,55	5,69	4,55	18,84	15,07	33,16	26,53	40,20	32,16
0,75	6,48	8,79	13,31		6,26	5,01	6,26	5,01	6,26	5,01	21,97	17,57	38,36	30,69	46,42	37,14
0,88	8,13	12,44	18,59		7,82	6,26	7,82	6,26	7,82	6,26	31,11	24,89	53,38	42,70	64,33	51,46
1,00	9,70	16,34	24,13	n.m.	9,33	7,47	9,33	7,47	9,33	7,47	40,84	32,67	69,09	55,27	82,98	66,39
1,13	11,42	21,11	30,84		11,04	8,83	11,04	8,83	11,04	8,83	52,76	42,21	88,05	70,44	105,41	84,33
1.25	12,93	26,01	37,68		12,67	10,13	12,67	10,13	12,67	10,13	65,03	52,02	107,30	85,84	128,09	102,47

Reststützmomente 8)

	l _{a.}	_B = 10 m	ım	I _{a,6}	₃ = 60 m	ım	l _{a,t}	, = 100 m	ım	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R.Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{RRk} = 0 für L≤min L
										$M_{RRk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{RR}$
										$M_{R,Rk} = \max M_{R,k}$ für $L \ge \max L$

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-		Ve	erbindung	g in jeden	n anliege	enden Gu	urt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		M/\	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,70	4,55	59,41	-	5,86	-	-	59,41	29,71	-	2,93	-	-	29,71
0,75	5,01	68,23	-	6,48	-	-	68,23	34,11	-	3,24	-	-	34,11
0,88	6,26	93,87	-	8,13	_	20.1	93,87	46,94	-	4,07	_	_	46,94
1,00	7,47	121,02	-	9,70	-		121,02	60,51	-	4,85			60,51
1,13	8,83	138,38	-	11,42	L	-	138,38	69,19	-	5,71	-	-	69,19
1,25	10,13	153,57	-	12,93		-	153,57	76,79	-	6,46		- 1	76,79


SAB 70R/800

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Anlage 1.11.3 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter:

V. SACHSEN

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ung ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I* eff	I-	A _g	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	Lgr
mm	kN/m²	cm	ı⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,70	0,088	67,1	71,5	9,93	2,74	4,08	5,46	2,91	3,93	,	*
0,75	0,094	73,4	78,1	10,68	2,74	4,08	6,27	2,89	3,90	/	,
0,88	0,110	90,5	95,1	12,64	2,74	4,08	8,40	2,86	3,96	0.0	1
1,00	0,125	106,9	108,7	14,44	2,74	4,08	10,52	2,84	4,00		
1,13	0,141	123,3	123,3	16,39	2,74	4,08	12,97	2,82	4,03		
1,25	0,156	136,9	136,9	18,19	2,74	4,08	15,30	2,81	4,05		1.7

Schubfeldwerte

		ronaar roton (d der Gebrau	(abata valiah	skoit 17)		G	renzzus	tand der	Tragfäh	gkeit 18)	
	G	enzzustani	i dei Gebrad	ichstaugher	IKell "						_asteinleitu	ng
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R 16)	T _{RK,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	1.4	2	13.1	1 2	Rk,g	-R	'Rk,i	' `3		130 mm	280 mm
mm	kN/m	10⁴-m/kN	10-⁴ ·m²/kN	10⁴·1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt	•							
0,70	2,81	0,280	25,207	4,375	1,400	11,29	4,50	33,79	0,268	4,12	10,49	13,27
0,75	3,37	0,260	21,001	4,375	1,400	12,59	4,50	42,06	0,278	4,60	11,29	14,27
0,88	5,14	0,220	13,794	4,375	1,400	16,20	4,50	67,20	0,302	5,92	13,36	16,88
1,00	7,17	0,193	9,879	4,375	1,400	19,79	4,50	76,80	0,323	7,23	15,26	19,30
1,13	9,85	0,170	7,191	4,375	1,400	23,93	4,50	87,20	0,344	8,75	17,33	21,91
1,25	12,80	0,153	5,539	4,375	1,400	27,98	4,50	96,80	0,362	10,23	19,24	24,32
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	egschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,70	7,06	0,280	2,478	4,375	0,700	11,29	4,50	33,79	0,838	12,52	10,49	13,27
0,75	8,48	0,260	2,065	4,375	0,700	12,59	4,50	42,06	0,838	13,97	11,29	14,27
0,88	12,90	0,220	1,356	4,375	0,700	16,20	4,50	67,20	0,838	17,98	13,36	16,88
1,00	18,02	0,193	0,971	4,375	0,700	19,79	4,50	76,80	0,838	21,97	15,26	19,30
1,13	24,75	0,170	0,707	4,375	0,700	23,93	4,50	87,20	0,838	26,58	17,33	21,91
1,25	32,14	0,153	0,545	4,375	0,700	27,98	4,50	96,80	0,838	31,09	19,24	24,32

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".

SAB 70R/800

Anlage 1.11.4 zum Prüfbescheid ALS TYPENENTWURF

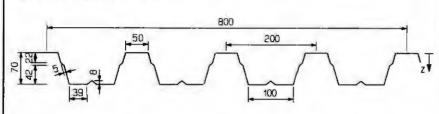
in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

FREISTAAT

Bearbeiter:


Leiter:

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes fyk =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

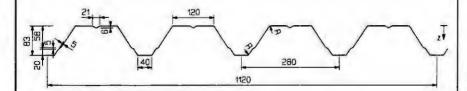
Nenn-	Feldmo-					Elastis	ch aufi	nehmb	are So	hnittgrö	ößen an	Zwische	nauflage	ern ^{1) 2) 4)}	5) 7)	
blech-	ment	End	lauf- kraft ⁶⁾	Quer-						Line	eare Inte	eraktion				
dicke		lagen	Krait '	kraft		5	Stützm	oment	е			Zw	ischenau	uflagerkr	äfte	
t _N I			l _{a2} = 40 mm		= 1	l0 mm	1 _{a 8} = 6	30 mm	 _{a B} = 1	00 mm	_{a,B} = 1	0 mm	l _{a 8} = 6	0 mm	I _{aB} = 10	00 mm
t _N	M _{c,Rk,F}	R _w	,Rk,A	$V_{w,Rk}$	Mº Rk,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	Rº Rk,B	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNr	n/m					kN	l/m		
0,70	4,55	6,13	9,35		7,33	5,86	7,33	5,86	7,33	5,86	15,34	12,27	26,99	21,59	32,71	26,17
0,75	5,01	7,12	10,78		8,10	6,48	8,10	6,48	8,10	6,48	17,79	14,23	31,07	24,85	37,59	30,08
0,88	6,26	10,05	15,01		10,16	8,13	10,16	8,13	10,16	8,13	25,12	20,09	43,10	34,48	51,94	41,55
1,00	7,47	13,28	19,61	n.m.	12,13	9,70	12,13	9,70	12,13	9,70	33,19	26,55	56,15	44,92	67,44	53,95
1,13	8,83	17,40	25,42		14,27	11,42	14,27	11,42	14,27	11,42	43,49	34,79	72,58	58,07	86,89	69,51
1,25	10,13	21,84	31,63		16,16	12,93	16,16	12,93	16,16	12,93	54,59	43,67	90,08	72,06	107,53	86,02

Reststützmomente 8)

	l _{a,}	_B = 10 m	m	las	= 60 m	m	l _{a.E}	= 100 m	m	Reststützmomente M _{R,Rk}
₹ _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R Rk} = 0 für L≤min L
					+					$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R}$
										M _{RRk} = max M _{Rx} für L≥max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-		Ve	erbindung	g in jeder	n anliege	enden Gu	urt	Ver	bindung	in jedem	2. anlie	genden G	aurt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,70	5,86	59,41	-	4,55	-	-	59,41	29,71	-	2,28	-	-	29,71
0,75	6,48	68,23	-	5,01	-	-	68,23	34,11		2,50		-	34,11
0,88	8,13	93,87	-	6,26	- 1	_	93,87	46,94		3,13	_	104	46,94
1,00	9,70	121,02	-	7,47		-	121,02	60,51		3,73	- 4	18	60,51
1,13	11,42	138,38	-	8,83	-	-	138,38	69,19	-	4,42	-	-	69,19
1,25	12,93	153,57	-	10,13	-	_	153,57	76,79	-	5,07	-	_	76,79
1,25	12,93	153,57	-	10,13	-	-	153,57	76,79	-	5,07	-		-


SAB 85R/1120

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Anlage 1.12.1 zum Prüfbescheid

ALS TYPENENTWURF in baustatischer Hinsicht geprüft.

Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter:

FREISTAAT Bearbeiter: SACHSEN

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

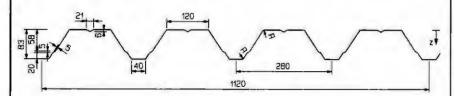
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾	1,5	Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksame	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	i* eff	I- _{eff}	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	Lgr
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,080	84,3	88,4	9,32	3,13	3,29	4,23	3,59	3,70	3,39	4,24
0,88	0,094	103,3	107,7	11,03	3,13	3,29	5,54	3,56	3,70	4,58	5,73
1,00	0,107	121,3	123,1	12,60	3,13	3,29	6,92	3,53	3,64	5,62	7,03
1,13	0,121	139,8	139,8	14,31	3,13	3,29	8,53	3,50	3,57	6,60	8,25
1,25	0,134	155,1	155,1	15,88	3,13	3,29	10,14	3,47	3,52	7,68	9,60
1,50	0,161	187,1	187,1	19,16	3,13	3,29	13,77	3,37	3,37	9,98	12,48

Schubfeldwerte

	C.	onzzuoton.	d der Gebrau	obstaualisk	alcoit 17)		0	Grenzzus	tand der	Tragfähi	gkeit 18)	
	GI	enzzustant	i dei Gebrad	icristaugiici	ikell '					I	_asteinleitu	ıng
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K* 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	, p'Ck	1.1	2	1 1	. 2	* Rk,g	-R	Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10-4 · m²/kN	10-4 - 1/kN	10⁴·m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	3,14	0,227	17,854	3,125	1,960	6,86	6,50	29,70	0,412	3,11	13,53	16,51
0,88	4,77	0,192	11,727	3,125	1,960	8,82	6,50	49,19	0,448	4,00	16,00	19,53
1,00	6,66	0,168	8,399	3,125	1,960	10,78	6,50	73,43	0,479	4,89	18,29	22,32
1,13	9,16	0,148	6,114	3,125	1,960	13,04	6,50	87,20	0,511	5,92	20,76	25,34
1,25	11,89	0,133	4,709	3,125	1,960	15,25	6,50	96,80	0,538	6,92	23,05	28,13
1,50	19,01	0,110	2,944	3,125	1,960	20,21	6,50	116,80	0,591	9,17	27,81	33,95
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	3,06	0,227	11,528	3,125	0,980	6,86	6,50	29,70	0,568	7,60	13,53	16,51
0,88	4,66	0,192	7,572	3,125	0,980	8,82	6,50	49,19	0,568	9,78	16,00	19,53
1,00	6,51	0,168	5,423	3,125	0,980	10,78	6,50	73,43	0,568	11,94	18,29	22,32
1,13	8,94	0,148	3,948	3,125	0,980	13,04	6,50	87,20	0,568	14,45	20,76	25,34
1,25	11,60	0,133	3,040	3,125	0,980	15,25	6,50	96,80	0,568	16,90	23,05	28,13
1,50	18,55	0,110	1,901	3,125	0,980	20,21	6,50	116,80	0,568	22,40	27,81	33,95

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 85R/1120

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Anlage 1.12.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

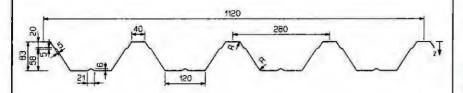
Nenn-	Feldmo-				1	Elastis	ch aufr	nehmb	are So	hnittgrö	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	End	lauf- kraft ⁶⁾	Quer-						Line	eare Inte	eraktion				
dicke		lagen	(iail '	kraft		5	Stützm	oment	е			Zw	ischenau	ıflagerkr	äfte	
			= 40 mm		l _{a,B} = 1	0 mm	i _{a B} = 6	0 mm	I _{a,B} = 1	20 mm	I _{a,B} = 1	0 mm	l _{a,8} = 6	0 mm	I _{a,B} = 12	20 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ _{Rk,6}	M _{c,Rk,B}	Mº Rk.,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R° RK,B	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNr	n/m						l/m		
0,75	5,47	5,41	8,20		6,47	5,18	6,47	5,18	6,47	5,18	13,53	10,83	23,63	18,91	30,70	24,56
0,88	7,01	7,73	11,55		7,96	6,37	7,96	6,37	7,96	6,37	19,32	15,46	33,16	26,53	42,84	34,27
1,00	8,47	10,21	15,08		9,38	7,50	9,38	7,50	9,38	7,50	25,51	20,41	43,16	34,53	55,51	44,41
1,13	10,10	13,25	19,36	n.m.	10,95	8,76	10,95	8,76	10,95	8,76	33,12	26,49	55,26	44,21	70,77	56,61
1,25	11,63	16,38	3 23,73	12,38	9,90	12,38	9,90	12,38	9,90	40,95	32,76	67,57	54,06	86,21	68,97	
1,50	14,82	23,91	34,07		14,93	11,95	14,93	11,95	14,93	11,95	59,77	47,81	96,61	77,29	122,41	97,93

Reststützmomente 8)

	l _{a,l}	= 10 m	m	l _{a E}	= 60 m	m	l _{a.6}	= 120 m	m	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R Rk} = 0 für L≤min L
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M$
										M _{RRk} = max M _{Rk} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-		Ve	rbindung	g in jeden	n anliege	enden Gu	urt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,8}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	5,18	37,20	-	5,47	-		37,20	18,60	-	2,74		-	18,60
0,88	6,37	56,95	-	7,01	-	-	56,95	28,47	1.2	3,51	-	-	28,47
1,00	7,50	73,47	1	8,47	-	-	73,47	36,74	L	4,24	-	-	36,74
1,13	8,76	93,66	-	10,10	_	-	93,66	46,83	-	5,05	_		46,83
1,25	9,90	114,38	-	11,63	-	-	114,38	57,19	L	5,82	_	-	57,19
1,50	11,95	159,29	-	14,82	-		159,29	79,64	_	7.41	_	_	79,64


SAB 85R/1120

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Anlage 1,12.3 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05 08.2025 Leiter: FREISTAAT Bearbeiter:

Nennstreckgrenze des Stahlkernes f_{y,k} = 320 N/mm²

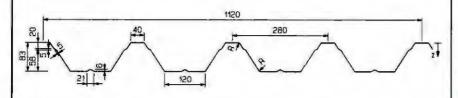
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ng		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ _{eff}	I-	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eπ}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	cm ² /m cm cm ² /m cr		cr	n		m	
0,75	0,080	88,4	84,3	9,32	3,13	5,01	4,23	3,59	4,60	3,30	4,13
0,88	0,094	107,7	103,3	11,03	3,13	5,01	5,54	3,56	4,60	4,19	5,24
1,00	0,107	123,1	121,3	12,60	3,13	5,01	6,92	3,53	4,66	4,98	6,23
1,13	0,121	139,8	139,8	14,31	3,13	5,01	8,53	3,50	4,73	5,84	7,30
1,25	0,134	155,1	155,1	15,88	3,13	5,01	10,14	3,47	4,78	6,62	8,28
1,50	0,161	187,1	187,1	19,16	3,13	5,01	13,77	3,37	4,93	8,01	10,00

Schubfeldwerte

	G.	onzzuetane	der Gebrau	chetaualiek	skoit 17)		G	Grenzzus	tand der	Tragfähi	gkeit 18)	
	Gi	:	i dei Gebiad	Gistaugiloi	INGIL .						.asteinleitu	ıng
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R 16)	Ť _{Rk,I}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} ²¹⁾	für a ≥
	* b,Ck	**1	11.2	1 1	1 2	Rk.g	-R	* Rk,I	1 3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m²/kN	10⁴-1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ıg: Verbindi	ung in jedem	Untergurt								
0,75	2,66	0,227	27,754	3,125	1,960	7,00	6.44	29,70	0,235	4,23	20,98	20,98
0,88	4,05	0,192	18,229	3,125	1,960	8,82	6,50	49,19	0,255	5,44	24,82	24,82
1,00	5,66	0,168	13,055	3,125	1,960	10,78	6,50	73,43	0,273	6,65	28,37	28,37
1,13	7,77	0,148	9,504	3,125	1,960	13,04	6,50	87,20	0,291	8,04	32,21	32,21
1,25	10,09	0,133	7,320	3,125	1,960	15,25	6,50	96,80	0,306	9,41	35,76	35,76
1,50	16,14	0,110	4,577	3,125	1,960	20,21	6,50	116,80	0,337	12,47	43,14	43,14
Sonderb	 efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0.75	18,86	0,227	0,629	3,125	0,980	7,00	6,44	29,70	0,690	19,87	20,98	20,98
0,88	28,71	0,192	0,413	3,125	0,980	8,82	6,50	49,19	0,690	25,57	24,82	24,82
1,00	40,09	0,168	0,296	3,125	0,980	10,78	6,50	73,43	0,690	31,24	28,37	28,37
1,13	55,07	0,148	0,215	3,125	0,980	13,04	6,50	87,20	0,690	37,79	32,21	32,21
1,25	71,50	0,133	0,166	3,125	0,980	15,25	6,50	96,80	0,690	44,20	35,76	35,76
1,50	114,4	0,110	0,104	3,125	0,980	20,21	6,50	116,80	0,690	58,59	43,14	43,14

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 85R/1120

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Anlage 1.12.4 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025

Leiter: Bearbeiter: FREISTAAT SACHSEN

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

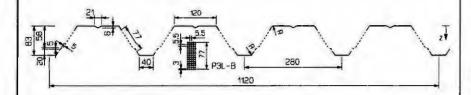
Nenn-	Feldmo-				E	Elastis	ch aufr	nehmb	are Sc	hnittgr	ißen an	Zwische	nauflage	rn ^{1) 2) 4) :}	5) 7)	
blech-	ment		auf-	Quer-						Line	are Inte	raktion				
dicke		lagen	craft ⁶⁾	kraft		5	Stützm	oment	е			Zwi	schenau	ıflagerkrá	ifte	
		= 10 mm	l _{a2} = 40 mm		I _{a,B} = 1	0 mm	I _{aB} = 6	0 mm		20 mm	I _{a,B} = 1	0 mm	I _{a,B} = 6	0 mm	l _{a,B} = 12	20 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	$V_{w,Rk}$	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ^o Rk,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	/m	kN/m			kNr	n/m						/m		
0,75	5,18	4,33	6,56		6,84	5,47	6,84	5,47	6,84	5,47	10,83	8,66	18,91	15,13	24,56	19,65
0,88	6,37	6,05	9,04		8,77	7,01	8,77	7,01	8,77	7,01	15,13	12,10	25,96	20,77	33,54	26,83
1,00	7,50	7,90	11,67		10,59	8,47	10,59	8,47	10,59	8,47	19,75	15,80	33,41	26,73	42,97	34,38
1,13	8,76	10,19	14,90	n.m.	12,63	10,10	12,63	10,10	12,63	10,10	25,49	20,39	42,53	34,03	54,46	43,57
1,25	9,90	12,59	18,24		14,54	11,63	14,54	11,63	14,54	11,63	31,49	25,19	51,95	41,56	66,28	53,03
1,50	11,95	18,52	26,40		18,53	14,82	18,53	14,82	18,53	14,82	46,31	37,04	74.85	59.88	94.84	75,87

Reststützmomente 8)

	l _{a.}	_B = 10 m	ım	l _{a,i}	_B = 60 m	ım	l _{a,i}	_B = 120 m	ım	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										M _{R Rk} = L - min L max M _{R Rk}
										$M_{RRk} = \frac{L - min L}{max L - min L} max M_{RRk}$
										M _{R.Rk} = max M _{R.k} für L≥ max L
										3.5

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

M _{c,Rk,B}	V- Intera R° _{Rk,B} kN/m	R _{w,Rk,B}	V _{w,Rk}	Endauf- lagerkraft R _{w,Rk,A}	M ^o _{Rk,B}	M _{c,Rk,B}	/- Intera	ktion R _{w,Rk,B}	$V_{w,Rk}$
kNm/m		1					R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
200 00000000	kN/m	kN/m			1.81 1				
F 40				KIWIII	kNm/m	kNm/m	kN/m	kN/m	kN/m
5,18	-	-	37,20	18,60	-	2,59	-	-	18,60
6,37	-	-	56,95	28,47		3,18	-	-	28,47
7,50	_	0	73,47	36,74	-	3,75	-	-	36,74
8,76	_	- 1	93,66	46,83	-	4,38	_		46,83
9,90	-	-	114,38	57,19	11	4,95		-	57,19
11,95	_	-	159,29	79,64	-	5,97	-	-	79,64
	8,76 9,90	8,76 - 9,90 -	8,76 9,90	8,76 - 93,66 9,90 - 114,38	8,76 - 93,66 46,83 9,90 114,38 57,19	8,76 93,66 46,83 - 9,90 114,38 57,19 -	8,76 - 93,66 46,83 - 4,38 9,90 - 114,38 57,19 - 4,95	8,76 - 93,66 46,83 - 4,38 - 9,90 - 114,38 57,19 - 4,95 -	8,76 93,66 46,83 - 4,38 9,90 114,38 57,19 - 4,95


SAB 85R/1120 P3L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Anlage 1.13.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 eiter: Bearbeiter:

Leiter: FREISTAAT Bearbeiter:

Nennstreckgrenze des Stahlkernes f, =

320 N/mm²

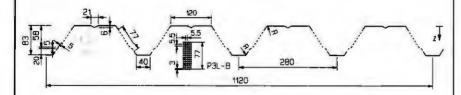
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ung ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksame	er Quersc	hnitt 12)	Einfeld- träger	Mehrfeld- träger
t _N	g	J* eff	I- eff	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	ı⁴/m			cm²/m	cn	n		m	
0,75	0,072	69,4	71,7	6,69	3,35	2,91	3,10	3,79	3,43	1,85	2,31
0,88	0,085	85,0	88,6	7,91	3,35	2,91	4,09	3,77	3,49	3,10	3,88
1,00	0,096	99,8	101,2	9,05	3,35	2,92	5,13	3,75	3,45	4,20	5,25
1,13	0,109	115,0	115,0	10,27	3,35	2,92	6,31	3,73	3,39	5,10	6,38
1,25	0,120	127,7	127,7	11,41	3,35	2,92	7,48	3,71	3,33	5,40	6,75
1,50	0,144	154,1	154,1	13,77	3,35	2,92	10,06	3,63	3,14	5,95	7,44

Schubfeldwerte

	C.	onzzuetone	d der Gebrau	obetovalich	strait 17)		0	Grenzzus	tand der	Tragfäh	gkeit 18)	
4	G	enzzustand	i dei Gebiad	cristaugiici	IKell "						asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K ₂ ^{14) 15)}	K*, ¹⁵⁾	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,i}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} ²¹⁾	für a ≥
	- b,Ck	'`1	1 2	1、1	1, 2	Rk,g	R	' Rk,I	3		130 mm	280 mn
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m²/kN	10 ⁻⁴ ·1/kN	10-4 · m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ıg: Verbind	ung in jedem	Untergurt								
0,75	2,06	0,227	27,182	3,125	1,960	6,97	5,99	29,70	0,412	2,04	13,53	16,51
0,88	3,14	0,192	17,854	3,125	1,960	7,62	6,50	49,19	0,448	2,63	16,00	19,53
1,00	4,38	0,168	12,786	3,125	1,960	9,31	6,50	73,43	0,479	3,21	18,29	22,32
1,13	6,01	0,148	9,308	3,125	1,960	11,26	6,50	87,20	0,511	3,89	20,76	25,34
1,25	7,81	0,133	7,169	3,125	1,960	13,18	6,50	96,80	0,538	4,55	23,05	28,13
1,50	12,49	0,110	4,483	3,125	1,960	17,47	6,50	116,80	0,591	6,03	27,81	33,95
Sonderb	efestigur	ng: Verbindi	ung mit 2 Scl	hrauben od	er verstärkte	r Unterle	egsche	ibe in jed	em Unte	ergurt ²⁰⁾		
0,75	2,01	0,227	17,550	3,125	0,980	6,97	5,99	29,70	0,568	4,99	13,53	16,51
0,88	3,06	0,192	11,527	3,125	0,980	7,62	6,50	49,19	0,568	6,42	16,00	19,53
1,00	4,27	0,168	8,256	3,125	0,980	9,31	6,50	73,43	0,568	7,85	18,29	22,32
1,13	5,87	0,148	6,010	3,125	0,980	11,26	6,50	87,20	0,568	9,49	20,76	25,34
1,25	7,62	0,133	4,629	3,125	0,980	13,18	6,50	96,80	0,568	11,10	23,05	28,13
1,50	12,19	0,110	2,894	3,125	0,980	17,47	6,50	116,80	0,568	14,71	27,81	33,95

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 85R/1120 P3L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Leiter:

Anlage 1.13.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Bearbeiter: FREISTAAT SACHSEN

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

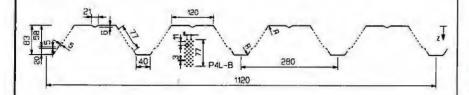
Nenn-	Feldmo-				F	Elastis	ch aufr	nehmb	аге Sc	hnittgrö	ößen an	Zwische	nauflage	ern 1) 2) 4) !	5) 7)	
blech-	ment	End	lauf- kraft ⁶⁾	Quer-						Line	eare Inte	eraktion				
dicke		lagen	Krait '	kraft		5	Stützm	oment	е			Zw	ischenau	ıflagerkra	äfte	
			= 40 mm		I _{a,B} = 1	0 mm	I _{a,B} = 6	0 mm	l _{a 8} = 1	20 mm	I _{a,B} = 1	0 mm	l _{a.8} = 6	0 mm	l _{a B} = 1;	20 mm
t _N		R _w	.Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M° Rk,8	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNr	n/m						/m		
0,75	4,48	2,32	3,52		4,70	3,76	4,70	3,76	4,70	3,76	5,81	4,65	10,15	8,12	13,18	10,55
0,88	5,78	3,32	4,96		5,89	4,71	5,89	4.71	5,89	4,71	8,30	6,64	14,24	11,39	18,40	14,72
1,00	6,99	4,38	6,47		7,04	5,63	7,04	5,63	7,04	5,63	10,96	8,76	18,53	14,83	23,84	19,07
1,13	8,28	5,69	8,31	n.m.	8,32	6,66	8,32	6,66	8,32	6,66	14,22	11,38	23,73	18,98	30,39	24,31
1,25	9,47	7,03	10,19		9,48	7,59	9,48	7,59	9,48	7,59	17,58	14,07	29,02	23,21	37,02	29,61
1,50	11,87	10,27	14,63		11,45	9,16	11,45	9,16	11,45	9,16	25,66	20,53	41,49	33,19	52,56	42,05

Reststützmomente 8)

l _{a,i}	_B = 10 m	im	l _{a,i}	_B = 60 m	m	l _{a e}	= 120 m	im	Reststützmomente M _{R,Rk}
min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
									M _{R Rk} = 0 für L≤min
									M _{R,Rk} = L - min L max M
									max L - min L
									M _{R,Rk} = max M _{R,k} für L≥ max
	min L	min L max L		min L max L max M _{R.Rk} min L	min L max L max M _{R,Rk} min L max L	min L max L max M _{R.Rk} min L max L max M _{R.Rk}	min L max L max M _{R,Rk} min L max L max M _{R,Rk} min L	min L max L max M _{RRk} min L max L max M _{RRk} min L max L	min L max L max M _{R,Rk} min L max L max M _{R,Rk} min L max L max M _{R,Rk}

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

	The second second	Ve	erbindung	j in jeden	n anliege	enden Gu	rt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	3,76	13,07	-	4,48	-	- 1	13,07	6,54	-	2,24		-	6,54
88,0	4,71	21,13	-	5,78	- 1	0	21,13	10,56	-	2,89	-	-	10,56
1,00	5,63	30,91	2	6,99	-	-	30,91	15,46	_	3,49	_	-	15,46
1,13	6,66	42,92	-	8,28		-	42,92	21,46	-	4,14	_	- 1	21,46
1,25	7,59	52,51	-	9,47	-	-	52,51	26,25	-	4,73	-	-	26,25
1,50	9,16	75,51	-	11,87	-	-	75,51	37,75	-	5,94		-	37,75


SAB 85R/1120 P4L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Anlage 1.14.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: FREISTAAT Bearbeiter:

SACHSEN

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

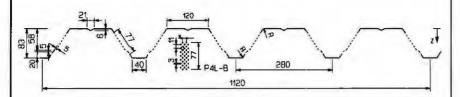
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ung ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten ¹³⁾
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	1 ⁺ eff	F _{eff}	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	Lgr
mm	kN/m²	cm	i⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,076	75,4	78,6	7,72	3,25	3,09	3,52	3,71	3,56	2,80	3,50
0,88	0,089	92,4	96,4	9,13	3,25	3,09	4,65	3,68	3,60	4,10	5,13
1,00	0,102	108,6	110,2	10,44	3,25	3,09	5,80	3,66	3,54	5,00	6,25
1,13	0,115	125,1	125,1	11,85	3,25	3,09	7,15	3,63	3,48	5,35	6,69
1,25	0,127	138,9	138,9	13,16	3,25	3,09	8,49	3,61	3,42	5,65	7,06
1,50	0,152	167.6	167,6	15,88	3,25	3,09	11,47	3,52	3,25	6,20	7,75

Schubfeldwerte

	G	enzzustano	der Gebrau	chstaudich	keit 17)		(Grenzzus	tand der	Tragfähi	gkeit 18)	
	O,	CHEZOGOTO	a dei Oebiao	onstaughor	incit						asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{1,Rk} 22)	F _{t,Rk} ²¹⁾	für a ≥
	D,CK	- 1			2	* Rk,g	-R	- RK,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10⁴·m²/kN	10⁴ ·1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbindu	ung in jedem	Untergurt								
0,75	2,45	0,227	22,891	3,125	1,960	6,87	6,23	29,70	0,412	2,43	13,53	16,51
0,88	3,72	0,192	15,035	3,125	1,960	8,12	6,50	49,19	0,448	3,12	16,00	19,53
1,00	5,20	0,168	10,768	3,125	1,960	9,92	6,50	73,43	0,479	3,82	18,29	22,32
1,13	7,14	0,148	7,839	3,125	1,960	12,00	6,50	87,20	0,511	4,62	20,76	25,34
1,25	9,27	0,133	6,037	3,125	1,960	14,03	6,50	96,80	0,538	5,40	23,05	28,13
1,50	14,83	0,110	3,775	3,125	1,960	18,60	6,50	116,80	0,591	7,16	27,81	33,95
Sonderb	efestigur	ng: Verbindu	ung mit 2 Sch	rauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	2,39	0,227	14,779	3,125	0,980	6,87	6,23	29,70	0,568	5,93	13,53	16,51
0,88	3,63	0,192	9,707	3,125	0,980	8,12	6,50	49,19	0,568	7,63	16,00	19,53
1,00	5,07	0,168	6,952	3,125	0,980	9,92	6,50	73,43	0,568	9,32	18,29	22,32
1,13	6,97	0,148	5,061	3,125	0,980	12,00	6,50	87,20	0,568	11,27	20,76	25,34
1,25	9,05	0,133	3,898	3,125	0,980	14,03	6,50	96,80	0,568	13,18	23,05	28,13
1,50	14,47	0,110	2,437	3,125	0,980	18,60	6,50	116,80	0,568	17,47	27,81	33,95

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 85R/1120 P4L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Anlage 1.14.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025

Leiter: Bearbeiter: SACHSEN

Nennstreckgrenze des Stahlkernes f_{vk} =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

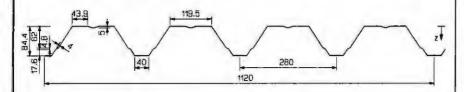
Nenn-	Feldmo-				E	Elastis	ch aufr	nehmb	are Sc	hnittgrö	ißen an	Zwische	nauflage	rn ^{1) 2) 4) 5}	5) 7)	
blech-	ment	End		Quer-						Line	are Inte	raktion				
dicke		lageri	tran -	kraft		5	Stützm	oment	е			Zwi	schenau	ıflagerkra	ifte	
	t _N M _{c,Rk,F}		I _{a2} = 40 mm		I _{a,8} = 1	0 mm	I _{aB} = 6	0 mm	I _{a,B} = 1;	20 mm	I _{a.B} = 1	0 mm	I _{B,B} = 6	0 mm	I _{a.B} = 12	20 mm
t _N		R _w	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	M ^D _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN		kN/m			kNr	n/m					kN	/m		
0,75	4,85	3,65	5,54		5,43	4,34	5,43	4,34	5,43	4,34	9,14	7,31	15,96	12,76	20,73	16,58
0,88	6,28	5,22	7,80		6,74	5,39	6,74	5,39	6,74	5,39	13,05	10,44	22,39	17,91	28,92	23,14
1,00	7,61	6,89	10,18		8,00	6,40	8,00	6,40	8,00	6,40	17,23	13,78	29,14	23,31	37,48	29,98
1,13	9,08	8,94	13,07	n.m.	9,39	7,51	9,39	7,51	9,39	7,51	22,36	17,89	37,31	29,85	47,78	38,22
1,25	10,43	11,06	16,02		10,67	8,53	10,67	8,53	10,67	8,53	27,65	22,12	45,62	36,50	58,20	46,56
1,50	13,22	16,14	23,01		12,87	10,30	12,87	10,30	12,87	10,30	40,35	32,28	65,23	52,18	82,64	66,12

Reststützmomente 8)

	l _{a,i}	= 10 m	im	l _{a,t}	= 60 m	ım	l _{a,E}	= 120 m	m	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤ min L
										$M_{RRK} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R}$
										M _{R,Rk} = max M _{R,k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	Feldmo-	Ve	rbindung	j in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	$R^{\scriptscriptstyle 0}_{_{Rk,B}}$	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	4,34	21,35	-	4,85	-	-	21,35	10,67	-	2,42	04.0	-	10,67
0,88	5,39	34,34	-	6,28		-	34,34	17,17	-	3,14			17,17
1,00	6,40	48,31	-	7,61	-	-	48,31	24,15	-	3,80	-	-	24,15
1,13	7,51	61,65		9,08	-	-	61,65	30,83	-	4,54	-	-	30,83
1,25	8,53	75,36	-	10,43	-	-	75,36	37,68	-	5,22	-	-	37,68
1,50	10,30	108,22	-	13,22	_	_	108,22	54,11	_	6,61	_	-	54,11


SAB 85R/1120 (Niederaula)

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Anlage 1.15.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

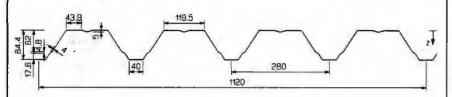
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten ¹³⁾
blech- dicke				nicht redu:	zierter Qu	erschnitt	wirksame	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	[+ eff	I- eff	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	Lgr	L _{gr}
mm	kN/m²	cm	ı⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,080	89,7	91,4	9,33	3,18	3,36	4,11	3,68	3,68	3,50	4,35
0,88	0,094	109,5	111,4	11,03	3,18	3,36	5,36	3,67	3,67	4,90	6,10
1,00	0,107	127,3	127,3	12,61	3,18	3,36	6,70	3,63	3,62	5,40	6,75
1,13	0,121	144,5	144,5	14,31	3,18	3,36	8,27	3,60	3,57	5,75	7,15
1,25	0,134	160,4	160,4	15,89	3,18	3,36	9,80	3,56	3,53	6,05	7,55
1,50	0,161	193,4	193,4	19,17	3,18	3,36	13,18	3,46	3,44	6,65	8,30

Schubfeldwerte

	C.	constant	der Gebrau	chetoualiek	skoit 17)		0	Grenzzus	tand der	Tragfäh	gkeit 18)	
	G	enzzustano	i dei Gebiau	ichstauglici	ikeit .						asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K ₂ ^{14) 15)}	K*, 15)	K*, 15}	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	**1	2	., 1	2	' Rk,g	-R	Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴-m/kN	10 ⁻⁴ ·m²/kN	10⁴-1/kN	10-4 m ² /kN	kN/m	m	kN/m	_	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	3,07	0,228	18,520	3,125	1,960	7,02	6,50	29,46	0,416	3,09	13,53	16,51
0,88	4,68	0,193	12,164	3,125	1,960	9,03	6,50	48,78	0,453	3,97	16,00	19,53
1,00	6,53	0,169	8,712	3,125	1,960	11,03	6,50	72,81	0,484	4,86	18,29	22,32
1,13	8,97	0,149	6,342	3,125	1,960	13,35	6,50	87,20	0,516	5,87	20,76	25,34
1,25	11,65	0,134	4,885	3,125	1,960	15,61	6,50	96,80	0,544	6,87	23,05	28,13
1,50	18,63	0,111	3,054	3,125	1,960	20,68	6,50	116,80	0,597	9,11	27,81	33,95
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	3,00	0,228	12,021	3,125	0,980	7,02	6,50	29,46	0,576	7,52	13,53	16,51
0,88	4,56	0,193	7,896	3,125	0,980	9,03	6,50	48,78	0,576	9,67	16,00	19,53
1,00	6,37	0,169	5,655	3,125	0,980	11,03	6,50	72,81	0,576	11,82	18,29	22,32
1,13	8,75	0,149	4,117	3,125	0,980	13,35	6,50	87,20	0,576	14,30	20,76	25,34
1,25	11,36	0,134	3,171	3,125	0,980	15,61	6,50	96,80	0,576	16,72	23,05	28,13
1,50	18,17	0,111	1,983	3,125	0,980	20,68	6,50	116,80	0,576	22,16	27,81	33,95

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 85R/1120 (Niederaula)

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Anlage 1.15.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025

Nennstreckgrenze des Stahlkernes f, =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

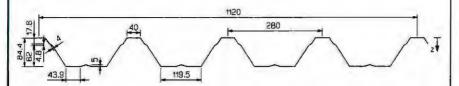
Nenn-	Feldmo-				I	Elastis	ch aufr	nehmb	are Sc	hnittgrö	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	End	auf- kraft ⁶⁾	Quer-						Line	are Inte	raktion				
dicke		lageir	trait	kraft		5	Stützm	oment	е			Zwi	ischenau	ıflagerkr	äfte	
-) _{a1} = 10 mm	l _{a2} = 40 mm		I _{a B} = 1	0 mm	I _{a.B} = 6	0 mm	I _{a,8} = 1	60 mm	I _{a,8} = 1	0 mm	I _{a.8} = 6	0 mm	I _{a,B} = 10	60 mm
t _N	t _N M _{c,Rk,F}	R _w	Rk,A	$V_{w,Rk}$	M° Rk,8	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ^D _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN		kN/m			kNr	n/m						l/m		
0,75	5,63	5,59	8,47		6,53	5,23	6,53	5,23	6,53	5,23	13,97	11,18	24,40	19,52	35,56	28,45
0,88	7,23	7,94	11,86		8,11	6,49	8,11	6,49	8,11	6,49	19,85	15,88	34,06	27,25	49,26	39,41
1,00	8,60	10,45	15,43		9,56	7,65	9,56	7,65	9,56	7,65	26,12	20,90	44,19	35,35	63,52	50,81
1,13	10,26	13,52	19,76	n.m.	11,16	8,93	11,16	8,93	11,16	8,93	33,81	27,05	56,42	45,14	80,61	64,49
1,25	11,80	16,69	24,18		12,62	10,09	12,62	10,09	12,62	10,09	41,73	33,38	68,86	55,08	97,87	78,30
1,50	14,87	24,29	34,62		15,22	12,17	15,22	12,17	15,22	12.17	60,72	48,58	98,16	78,53	138,20	110,56

Reststützmomente 8)

	l _{a,l}	_B = 10 m	ım	l _{a,l}	= 60 m	ım	1,	_в = 160 m	ım	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										M _{R Rk} = L - min L max M _R
										M _{R,Rk} = max M _{R,k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	Feldmo-	Ve	erbindung	g in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R⁰ Rk,B	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	5,23	35,09	-	5,63	-	-	35,09	17,55	-	2,81	-	-	17,55
0,88	6,49	55,86	-	7,23	-	-	55,86	27,93	-	3,61	2.0	-	27,93
1,00	7,65	72,17	-	8,60	-	-	72,17	36,08	-	4,30	-	-	36,08
1,13	8,93	92,10	-	10,26	-	-	92,10	46,05	-	5,13	_	-	46,05
1,25	10,09	112,60	-	11,80		-	112,60	56,30	_	5,90		-	56,30
1,50	12,17	161,99	-	14,87	_	-	161,99	80.99	-	7.43		_	80,99


SAB 85R/1120 (Niederaula)

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Anlage 1.15.3 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f, =

320 N/mm²

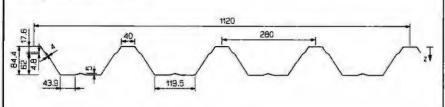
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ung ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten ¹³⁾
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I* eff	l' _{eff}	A _g	Ìg	z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	ı⁴/m	cm²/m	Cr	n	cm²/m	cr	n		'n
0,75	0,080	91,4	89,7	9,33	3,18	5,08	4,11	3,68	4,76	3,50	4,35
0,88	0,094	111,4	109,5	11,03	3,18	5,08	5,36	3,67	4,77	4,40	5,50
1,00	0,107	127,3	127,3	12,61	3,18	5,08	6,70	3,63	4,82	5,20	6,50
1,13	0,121	144,5	144,5	14,31	3,18	5,08	8,27	3,60	4,87	5,75	7,15
1,25	0,134	160,4	160,4	15,89	3,18	5,08	9,80	3,56	4,91	6,05	7,55
1,50	0,161	193,4	193,4	19,17	3,18	5,08	13,18	3,46	5,00	6,65	8,30

Schubfeldwerte

		anzzuatana	d der Gebrau	ohoto valioh	decit 17)		C	Grenzzus	tand der	Tragfähi	gkeit 18)	
t _N	G	enzzustand	i dei Gebrad	icristaugiici	ikeil					1	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{(,Rk} 22)	F _{t,Rk} ²¹⁾	für a ≥
	- b,Ck	.4	, 2		. 2	* Rk,g	TR.	RK,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m ² /kN	10-4 · 1/kN	10 ⁻⁴ · m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbindu	ung in jedem	Untergurt								
0,75	2,61	0,228	28,672	3,125	1,960	7,09	6,47	29,46	0,236	4,21	20,98	20,98
0,88	3,98	0,193	18,832	3,125	1,960	9,03	6,50	48,78	0,257	5,42	24,82	24,82
1,00	5,56	0,169	13,487	3,125	1,960	11,03	6,50	72,81	0,274	6,62	28,37	28,37
1,13	7,63	0,149	9,818	3,125	1,960	13,35	6,50	87,20	0,292	8,01	32,21	32,21
1,25	9,91	0,134	7,562	3,125	1,960	15,61	6,50	96,80	0,308	9,36	35,76	35,76
1,50	15,85	0,111	4,728	3,125	1,960	20,68	6,50	116,80	0,338	12,41	43,14	43,14
Sonderb	efestigur	ng: Verbindu	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	18,55	0,228	0,650	3,125	0,980	7,09	6,47	29,46	0,702	19,75	20,98	20,98
0,88	28,25	0,193	0,427	3,125	0,980	9,03	6,50	48,78	0,702	25,41	24,82	24,82
1,00	39,44	0,169	0,306	3,125	0,980	11,03	6,50	72,81	0,702	31,05	28,37	28,37
1,13	54,18	0,149	0,223	3,125	0,980	13,35	6,50	87,20	0,702	37,56	32,21	32,21
1,25	70,34	0,134	0,171	3,125	0,980	15,61	6,50	96,80	0,702	43,93	35,76	35,76
1,50	112,5	0,111	0,107	3,125	0,980	20,68	6,50	116,80	0,702	58,23	43,14	43,14

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 85R/1120 (Niederaula)

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Anlage 1.15.4 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025

Leiter: Bearbeiter: REISTAAT SACHSEN

Nennstreckgrenze des Stahlkernes f_{v.k} = 320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

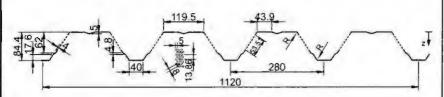
Nenn-	Feldmo-				1	Elastis	ch aufr	nehmb	are Sc	hnittgr	ößen an	Zwische	nauflage	rn 1) 2) 4)	5) 7)	
blech-	ment	End		Quer-						Line	eare Inte	eraktion				
dicke		lagen	kraft ⁶⁾	kraft		5	Stützım	oment	е			Zw	ischenau	ıflagerkr	äfte	
t _N M _{c,Rk,F}		l _{a2} = 40 mm		= 1	I0 mm	I _{aB} = 6	0 mm	I _{a,B} = 1	60 mm	I _{a,B} = 1	0 mm	I _{a,6} = 6	0 mm	I _{a,B} = 16	60 mm	
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		/m	kN/m				n/m						/m		
0,75	5,23	4,31	6,53		7,04	5,63	7,04	5,63	7,04	5,63	10,78	8,63	18,83	15,06	27,44	21,95
0,88	6,49	6,01	8,98		9,04	7,23	9,04	7,23	9,04	7,23	15,02	12,02	25,78	20,62	37,29	29,83
1,00	7,65	7,82	11,56		10,75	8,60	10,75	8,60	10,75	8,60	19,56	15,65	33,09	26,47	47,56	38,05
1,13	8,93	10,06	14,70	n.m.	12,82	10,26	12,82	10,26	12,82	10,26	25,16	20,12	41,98	33,58	59,98	47,98
1,25	10,09	12,39	17,94		14,75	11,80	14,75	11,80	14,75	11,80	30,97	24,78	51,10	40,88	72,64	58,11
1,50	12,17	18,07	25,75		18,59	14,87	18,59	14,87	18,59	14,87	45,17	36,14	73,02	58,42	102,82	82,25

Reststützmomente 8)

	las	_e = 10 m	m	I _{a,f}	s = 60 m	ım	lat	= 160 m	ım	Reststützmomente M _{R.Rk.}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R.Rk} = 0 für L≤min L
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,R}$
										M _{R,Rk} = max M _{R,k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-		Ve	erbindung	g in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	$R_{w,Rk,A}$	M ⁰ _{Rk,B}	M _{c,Rk,B}	$R^0_{Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	5,63	35,09	-	5,23	-	-	35,09	17,55	-	2,61	-	-	17,55
0,88	7,23	55,86	-	6,49	-	-	55,86	27,93	_	3,24	-	-	27,93
1,00	8,60	72,17	-	7,65	-	- 1	72,17	36,08	-	3,82	-	-	36,08
1,13	10,26	92,10	-	8,93	-	=	92,10	46,05	-	4,46	-	-	46,05
1,25	11,80	112,60	1	10,09	-	-	112,60	56,30	-	5,05	-	- 1	56,30
1,50	14,87	161,99	_	12,17		_	161.99	80,99	_	6.09	_	_	80,99


SAB 85R/1120 P5L (Niederaula)

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Anlage 1.16.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

CHSEN

Nennstreckgrenze des Stahlkernes f_{v k} = 320 N/mm²

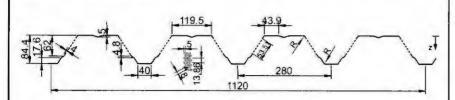
Maßgebende Querschnittswerte

		ing ¹¹⁾	nicht redu							
			Thort redu	zierter Qu	erschnitt	wirksame	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
g	+ eff	- eff	A _g	ig	Z ₉	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
kN/m²	cm	4/m	cm²/m	cr	n	cm²/m	cr	n		m
0,072	82,63	84,71	7,03	3,53	3,39	3,37	3,89	3,93	2,10	2,60
0,084	101,47	103,43	8,32	3,53	3,39	4,41	3,88	3,86	3,40	4,25
0,096	118,20	118,20	9,51	3,53	3,39	5,45	3,87	3,82	4,70	5,85
0,108	134,21	134,21	10,80	3,53	3,39	6,64	3,85	3,78	5,55	6,90
0,120	148,98	148,98	11,99	3,53	3,39	7,78	3,84	3,74	5,85	7,30
0,144	179,75	179,75	14,46	3,53	3,39	10,21	3,78	3,63	6,40	8,00
	kN/m² 0,072 0,084 0,096 0,108 0,120	kN/m² cm 0,072 82,63 0,084 101,47 0,096 118,20 0,108 134,21 0,120 148,98	kN/m² cm⁴/m 0,072 82,63 84,71 0,084 101,47 103,43 0,096 118,20 118,20 0,108 134,21 134,21 0,120 148,98 148,98	kN/m² cm⁴/m cm²/m 0,072 82,63 84,71 7,03 0,084 101,47 103,43 8,32 0,096 118,20 118,20 9,51 0,108 134,21 134,21 10,80 0,120 148,98 148,98 11,99	kN/m² cm⁴/m cm²/m cr 0,072 82,63 84,71 7,03 3,53 0,084 101,47 103,43 8,32 3,53 0,096 118,20 118,20 9,51 3,53 0,108 134,21 134,21 10,80 3,53 0,120 148,98 148,98 11,99 3,53	kN/m² cm⁴/m cm²/m cm 0,072 82,63 84,71 7,03 3,53 3,39 0,084 101,47 103,43 8,32 3,53 3,39 0,096 118,20 118,20 9,51 3,53 3,39 0,108 134,21 134,21 10,80 3,53 3,39 0,120 148,98 148,98 11,99 3,53 3,39	kN/m² cm⁴/m cm²/m cm²/m cm²/m 0,072 82,63 84,71 7,03 3,53 3,39 3,37 0,084 101,47 103,43 8,32 3,53 3,39 4,41 0,096 118,20 118,20 9,51 3,53 3,39 5,45 0,108 134,21 134,21 10,80 3,53 3,39 6,64 0,120 148,98 148,98 11,99 3,53 3,39 7,78	kN/m² cm⁴/m cm²/m cm cm²/m cm 0,072 82,63 84,71 7,03 3,53 3,39 3,37 3,89 0,084 101,47 103,43 8,32 3,53 3,39 4,41 3,88 0,096 118,20 118,20 9,51 3,53 3,39 5,45 3,87 0,108 134,21 134,21 10,80 3,53 3,39 6,64 3,85 0,120 148,98 148,98 11,99 3,53 3,39 7,78 3,84	kN/m² cm⁴/m cm²/m cm cm²/m cm 0,072 82,63 84,71 7,03 3,53 3,39 3,37 3,89 3,93 0,084 101,47 103,43 8,32 3,53 3,39 4,41 3,88 3,86 0,096 118,20 118,20 9,51 3,53 3,39 5,45 3,87 3,82 0,108 134,21 134,21 10,80 3,53 3,39 6,64 3,85 3,78 0,120 148,98 148,98 11,99 3,53 3,39 7,78 3,84 3,74	kN/m² cm⁴/m cm²/m cm cm²/m cm²/m cm²/m cm²/m cm²/m r 0,072 82,63 84,71 7,03 3,53 3,39 3,37 3,89 3,93 2,10 0,084 101,47 103,43 8,32 3,53 3,39 4,41 3,88 3,86 3,40 0,096 118,20 118,20 9,51 3,53 3,39 5,45 3,87 3,82 4,70 0,108 134,21 134,21 10,80 3,53 3,39 6,64 3,85 3,78 5,55 0,120 148,98 148,98 11,99 3,53 3,39 7,78 3,84 3,74 5,85

Schubfeldwerte

	G	enzzuetane	i der Gebrau	chetaualich	keit 17)		G	irenzzus	tand der	Tragfähi	gkeit 18)	
	Gi	CHZZUSIANIC	dei Gebiat	icristaugiici	IVCIT .					1	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, ¹⁵⁾	K* ₂ 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	- b,Ck	11	1 2	. 1	** 2	* Rk,g	-R	* Rk,I	. 3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10⁴ ·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ıg: Verbindi	ung in jedem	Untergurt								
0,75	2,25	0,228	25,327	3,125	1,960	7,83	5,98	12,93	0,416	2,26	12,17	14,86
0,88	3,42	0,193	16,635	3,125	1,960	7,54	6,92	20,88	0,453	2,91	14,40	17,58
1,00	4,78	0,169	11,914	3,125	1,960	9,00	7,00	30,59	0,484	3,55	16,46	20,09
1,13	6,56	0,149	8,673	3,125	1,960	10,89	7,00	44,03	0,516	4,30	18,69	22,81
1,25	8,52	0,134	6,680	3,125	1,960	12,73	7,00	56,42	0,544	5,02	20,75	25,32
1,50	13,63	0,111	4,177	3,125	1,960	16,88	7,00	81,23	0,597	6,66	25,03	30,55
Sonderb	efestigur	ıg: Verbindi	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gschei	be in jed	lem Unte	rgurt ²⁰⁾		
0,75	2,19	0,228	16,440	3,125	0,980	7,83	5,98	12,93	0,576	5,50	12,17	14,86
0,88	3,34	0,193	10,798	3,125	0,980	7,54	6,92	20,88	0,576	7,07	14,40	17,58
1,00	4,66	0,169	7,733	3,125	0,980	9,00	7,00	30,59	0,576	8,64	16,46	20,09
1,13	6,40	0,149	5,630	3,125	0,980	10,89	7,00	44,03	0,576	10,45	18,69	22,81
1,25	8,31	0,134	4,336	3,125	0,980	12,73	7,00	56,42	0,576	12,23	20,75	25,32
1,50	13,29	0,111	2,711	3,125	0,980	16,88	7,00	81,23	0,576	16,21	25,03	30,55

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)". (Klasse 2 nach DIN EN 508-1:2014)


SAB 85R/1120 P5L (Niederaula)

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Anlage 1.16.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025

Nennstreckgrenze des Stahlkernes $f_{y,k} = 320 \text{ N/mm}^2$

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

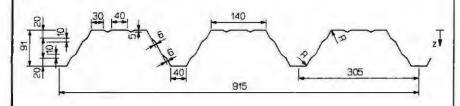
Nenn-	Feldmo-				1	Elastis	ch aufr	nehmb	are So	hnittgr	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment		lauf-	Quer-						Line	eare Inte	eraktion				
dicke		lagei	kraft ⁶⁾	kraft		5	Stützm	oment	е			Zw	ischenau	ıflagerkr	äfte	
		l _{a2} = 40 mm		= 1	10 mm	l _{a B} = 6	0 mm	l _{a 8} = 16	30 mm	_{a 6} = 1	0 mm	I _{a,B} = 6	0 mm	I _{a,B} = 16	60 mm	
t _N	M _{c,Rk,F}	R _w	,Rk,A	V _{w,Rk}	M ⁰ Rk,B	M _{c,Rk.8}	M ⁰ _{Rk,B}	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNr	n/m					kN	l/m		
0,75	4,477	1,84	6,78		6,06	4,85	6,06	4,85	6,06	4,85	11,19	8,95	19,55	15,64	25,69	20,55
0,88	5,983	2,55	9,27		7,50	6,00	7,50	6,00	7,50	6,00	15,51	12,41	26,53	21,22	34,46	27,57
1,00	7,459	3,29	11,86		8,88	7,11	8,88	7,11	8,88	7,11	20,08	16,06	33,58	26,87	43,47	34,78
1,13	9,146	4,19	14,99	n.m.	10,41	8,33	10,41	8,33	10,41	8,33	25,64	20,51	42,03	33,62	54,19	43,35
1,25	10,640	5,11	18,16		11,80	9,44	11,80	9,44	11,80	9,44	31,34	25,07	50,53	40,42	64,93	51,94
1,50	13,533	7,28	25,61		14,23	11,39	14,23	11,39	14,23	11,39	44,91	35,93	70,39	56,31	89,82	71,86

Reststützmomente 8)

	l _{a,t}	= 10 m	im	اء	= 60 m	m	l _{a,8}	= 160 m	m	Reststützmomente M _{R,Rk}
L _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{RRk} = 0 für L≤min L
										l – min l
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M$
										M _{R.Rk} = max M _{R.Rk} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-	Feldmo-	Ve	erbindung	g in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		M/\	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	Ft _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	Rº Rk,B	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	4,849	12,93	-	4,477	-	-	12,93	6,47	-	2,238	-	-	6,47
0,88	6,004	20,88	-	5,983	- 1	-	20,88	10,44	-	2,991	-	-	10,44
1,00	7,105	30,59	-	7,459	-	-	30,59	15,30	-	3,730			15,30
1,13	8,327	44,03	-	9,146	-	_	44,03	22,02	-	4,573		-6	22,02
1,25	9,440	56,42	-	10,640	-	-	56,42	28,21	-	5,320	_	-	28,21
1,50	11,387	81,23	-	13,533	-	-	81,23	40,61	- 1	6,766	-	-	40,61
										1			


SAB 89R/915

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.17.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f, =

320 N/mm²

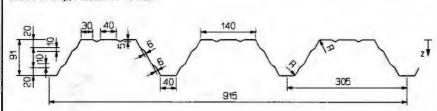
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ung ¹¹⁾		Norr	malkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	l+ eff	l-	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	¹⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,082	106,6	104,8	9,46	3,38	3,40	4,28	3,78	3,80	2,63	3,29
0,88	0,096	127,6	127,7	11,19	3,38	3,40	5,49	3,77	3,80	4,34	5,42
1,00	0,109	145,9	145,9	12,79	3,38	3,40	6,64	3,77	3,82	5,91	7,39
1,13	0,123	165,6	165,6	14,52	3,38	3,40	7,91	3,76	3,85	6,71	8,39
1,25	0.137	183.8	183.8	16.12	3,38	3.40	9,11	3,76	3.86	7,45	9,31

Schubfeldwerte

	G	ronavi intoni	d der Gebrau	chetovaliel	alcoit 17)		G	renzzus	tand der	Tragfäh	igkeit 18)	
	G	renzzustant	i der Gebrau	icristaugiici	IKEIL "						asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	- b,Ck	14	2	13 1	2	T _{Rk,g} 16)	-R	'Rk,I	, ,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m ² /kN	10-4 - 1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	2,28	0,229	25,258	3,825	2,135	7,77	6,50	21,46	0,388	2,88	13,53	16,51
0,88	3,47	0,194	16,590	3,825	2,135	10,00	6,50	35,54	0,422	3,71	16,00	19,53
1,00	4,85	0,169	11,882	3,825	2,135	12,21	6,50	53,05	0,452	4,53	18,29	22,32
1,13	6,66	0,149	8,649	3,825	2,135	14,77	6,50	77,65	0,481	5,48	20,76	25,34
1,25	8,65	0,134	6,662	3,825	2,135	17,28	6,50	96,80	0,507	6,41	23,05	28,13
Sonderb	efestigur	ng: Verbinde	ung mit 2 Sc	hrauben od	er verstärkte	er Unterle	gschei	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	2,21	0,229	18,943	3,825	1,068	7,77	6,50	21,46	0,542	6,42	13,53	16,51
0,88	3,36	0,194	12,442	3,825	1,068	10,00	6,50	35,54	0,542	8,27	16,00	19,53
1,00	4,69	0,169	8,911	3,825	1,068	12,21	6,50	53,05	0,542	10,10	18,29	22,32
1,13	6,44	0,149	6,487	3,825	1,068	14,77	6,50	77,65	0,542	12,22	20,76	25,34
1,10			4,996	3,825	1,068	17,28	6,50	96,80	0,542	14,29	23,05	28,13

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 89R/915

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.17.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f_{v,k} =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

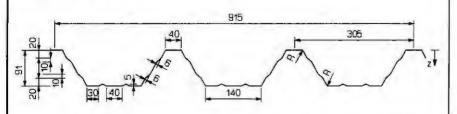
Nenn-	Feldmo-				I	Elastis	ch aufr	nehmb	are Sc	hnittgr	ößen an	Zwische	nauflage	ern ^{1) 2) 4) 5}	5) 7)	
blech-	ment	End	auf- craft ⁶⁾	Quer-						Line	eare Inte	eraktion				
dicke		lager	trait '	kraft		5	Stützm	oment	е			Zw	ischenau	uflagerkrá	áfte	
			l _{a2} = 40 mm		a,B = 1	I0 mm	l _{a,B} = 6	0 mm	 _{aB} = 12	20 mm	_{aB} = 1	0 mm	I _{aB} = 6	0 mm	I _{a B} = 12	20 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	Mº Rk.B	M _{c,Rk,B}	M° Rk,8	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		/m	kN/m			kNr	n/m					kN	l/m		
0,75	6,19	5,46	8,27		6,77	5,42	6,77	5,42	6,77	5,42	13,65	10,92	23,84	19,07	30,97	24,78
0,88	7,66	7,70	11,50		8,32	6,66	8,32	6,66	8,32	6,66	19,25	15,40	33,02	26,42	42,67	34,14
1,00	8,99	10,08	14,89	n.m.	9,80	7,84	9,80	7.84	9,80	7,84	25,19	20,15	42,62	34,10	54,82	43,86
1,13	10,41	12,99	18,98		11,43	9,14	11,43	9,14	11,43	9,14	32,47	25,98	54,19	43,35	69,39	55,51
1,25	11,84	15.98	23.15		12.91	10,33	12.91	10.33	12 91	10.33	39,95	31,96	65,92	52,73	84,10	67,28

Reststützmomente 8)

	lal	_B = 10 m	nm	l _{a,E}	= 60 m	ım	l _{a,t}	= 120 m	ım	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	miax M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R.Rk} = 0 für L≤min L
										I min I
										$M_{RRk} = \frac{L - \min L}{\max L - \min L} \cdot \max M$
						1				M _{R,Rk} = max M _{R,k} für L ≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	Feldmo-	Ve	rbindung	j in jeden	n anliege	enden Gu	urt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	5,42	36,98		6,19	-	-	36,98	18,49	-	3,09	-		18,49
0,88	6,66	56,73	-	7,66	-	-	56,73	28,37	-	3,83	-	-	28,37
1,00	7,84	72,86	-	8,99	-	-	72,86	36,43		4,50	-	-	36,43
1,13	9,14	92,34	-	10,41	-	-	92,34	46,17	-	5,21	4	_	46,17
1,25	10,33	112,28	-	11.84	_	_	112,28	56,14		5,92	-	- 1	56,14


SAB 89R/915

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Anlage 1.17.3 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

FREISTAAT Bearbeiter: Leiter: SACHSEN

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

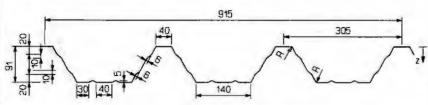
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ung ¹¹⁾		Norr	nalkraftbe	anspruchu	ng		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ _{eff}	‡-	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	ı⁴/m	cm ² /m	cr	n	cm²/m	cr	n		m
0,75	0,082	104,8	106,6	9,46	3,38	5,70	4,28	3,78	5,30	1	
0,88	0,096	127,7	127,6	11,19	3,38	5,70	5,49	3,77	5,30	1	7
1,00	0,109	145,9	145,9	12,79	3,38	5,70	6,64	3,77	5,28		1//
1,13	0,123	165,6	165,6	14,52	3,38	5,70	7,91	3,76	5,25		
1,25	0,137	183,8	183,8	16,12	3,38	5,70	9,11	3,76	5,24		/

Schubfeldwerte

	G.	enzzuetano	d der Gebrau	chetaualich	kait 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
4	G	CHZZUSIANI	dei Gebiau	icristatiglici	INGIL .					L	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K ₂ ^{14) 15)}	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	14	132		2	'Rk,g	-R	- Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ -m ² /kN	10⁴-1/kN	10-4 · m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	2,09	0,229	35,400	3,825	2,135	7,77	6,50	21,46	0,203	4,20		
0,88	3,18	0,194	23,252	3,825	2,135	10,00	6,50	35,54	0,221	5,41	1	
1,00	4,44	0,169	16,652	3,825	2,135	12,21	6,50	53,05	0,237	6,61		/
1,13	6,10	0,149	12,122	3,825	2,135	14,77	6,50	77,65	0,252	8,00	/	/
1,25	7,92	0,134	9,337	3,825	2,135	17,28	6,50	96,80	0,266	9,35	,	
Sonderb	efestigur	na: Verbindi	una mit 2 Sc	hrauben od	er verstärkte	er Unterle	easchei	be in lea	iem Unte	eraurt ²⁰⁾		1
0,75	17,79	0,229	0,671	3,825	1,068	7,77	6,50	21,46	0,698	19,58	y	
0,88	27,08	0,194	0,441	3,825	1,068	10,00	6,50	35,54	0,698	25,19	1	
1,00	37,81	0,169	0,316	3,825	1,068	12,21	6,50	53,05	0,698	30,78		
1,13	51,94	0,149	0,230	3,825	1,068	14,77	6,50	77,65	0,698	37,24		1
1,25	67,43	0,134	0,177	3,825	1,068	17,28	6,50	96,80	0,698	43,55		11
											1	. /

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 89R/915

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Anlage 1.17.4 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025

Leiter: Bearbeiter: FREISTAAT SACHSEN

Nennstreckgrenze des Stahlkernes f_{v.k} =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

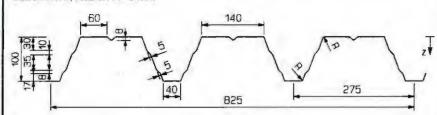
Nenn-	Feldmo-					Elastis	ch aufi	nehmb	are So	hnittgrö	ößen an	Zwische	nauflage	ern 1) 2) 4) 5	5) 7)	
blech-	ment	End	lauf-	Quer-						Line	are Inte	eraktion				
dicke		lagen	kraft ⁶⁾	kraft		5	Stütz:m	oment	е			Zwi	schenau	ıflagerkrä	äfte	
			_{a2} = 40 mm		= 1	10 mm	I _{a,B} = €	30 mm	I _{a,8} = 1	20 mm	I _{a B} = 1	0 mm	I _{a,B} = 6	0 mm	1 _{a,B} = 12	20 mm
t _N	M _{c,Rk,F}	R	,Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M° RK,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m			kNr	n/m					kN	l/m		
0,75	5,42	4,37	6,62		7,74	6,19	7,74	6,19	7,74	6,19	10,92	8,74	19,07	15,26	24,78	19,82
0,88	6,66	6,20	9,26		9,58	7,66	9,58	7,66	9,58	7,66	15,50	12,40	26,59	21,28	34,36	27,49
1,00	7,84	8,23	12,16	n.m.	11,24	8,99	11,24	8,99	11,24	8,99	20,59	16,47	34,83	27,86	44,79	35,83
1,13	9,14	10,86	15,86		13,02	10,41	13,02	10,41	13,02	10,41	27,14	21,71	45,29	36,23	58,00	46,40
1,25	10,33	13,71	19,85		14,81	11,84	14.81	11.84	14.81	11,84	34.26	27,41	56,54	45.23	72,13	57,70

Reststützmomente 8)

	lait	_e = 10 m	m	I _{a,t}	= 60 m	im	l _{a,t}	_B = 120 m	ım	Reststützmomente M _{R,Rk}
I _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										$M_{RRk} = \frac{L - \min L}{\max L - \min L} \cdot \max M$
										THE THIRD
										M _{R Rk} = max M _{R k} für L ≥ max l

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 112)

Nenn-		Ve	erbindung	j in jeden	n anliege	enden Gu	urt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	6,19	36,98	-	5,42	-	-	36,98	18,49	-	2,71	-	-	18,49
0,88	7,66	56,73	-	6,66	-	-	56,73	28,37	-	3,33		- 1	28,37
1,00	8,99	72,86	-	7,84	-	-	72,86	36,43	-	3,92	-	- 1	36,43
1,13	10,41	92,34	-	9,14	-	-	92,34	46,17	L	4,57	-)	-	46,17
1,25	11,84	112,28	-	10,33	-	-	112,28	56,14	-	5,16	-	-	56,14


SAB 100R/825

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.18.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 ter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f, =

320 N/mm²

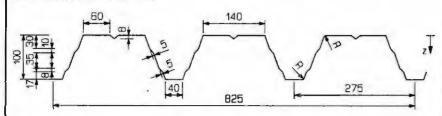
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I+ eff	j- eff	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	Lgr	L _{gr}
mm	kN/m²	cm	4/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,091	148,8	141,8	10,49	3,73	3,75	4,89	4,06	4,22	4,38	5,47
0,88	0,107	176,0	172,3	12,41	3,73	3,75	6,38	4,05	4,14	5,82	7,27
1,00	0,121	201,2	196,9	14,19	3,73	3,75	7,85	4,05	4,09	7,15	8,94
1,13	0,137	228,4	223,5	16,10	3,73	3,75	9,45	4,06	4,06	8,12	10,15
1,25	0,152	253,6	248,0	17,88	3,72	3,75	10,98	4,05	4,01	9,01	11,26
1,50	0,182	299,1	299,1	21,56	3,72	3,75	14,39	4,00	3,90	10,87	13,55

Schubfeldwerte

	G	onzzuetano	d der Gebrau	chetaualich	kait 17)		C	Grenzzus	tand der	Tragfähi	gkeit ¹⁸⁾	
	G	CHZZUSIANI	der Gebrau	Chstaught	INGIE					L	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K ₂ ^{14) 15)}	K*, 15)	K* 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,i}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	1.01	2	1,71	1, 2	'Rk,g	T-R	Rk,I	1,23		130 mm	280 mn
mm	kN/m	10 ⁻⁴ ·m/kN	10 ⁻⁴ · m ² /kN	10-4 · 1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	1,87	0,255	35,259	4,242	1,925	8,17	7,00	21,46	0,405	2,79	14,19	16,20
0,88	2,84	0,215	23,159	4,242	1,925	10,51	7,00	35,54	0,441	3,59	16,78	19,16
1,00	3,97	0,188	16,586	4,242	1,925	12,84	7,00	53,05	0,471	4,38	19,18	21,90
1,13	5,45	0,166	12,074	4,242	1,925	15,53	7,00	77,65	0,502	5,30	21,78	24,87
1,25	7,07	0,149	9,299	4,242	1,925	18,17	7,00	96,80	0,529	6,20	24,18	27,61
1,50	11,31	0,124	5,815	4,242	1,925	24,07	7,00	116,80	0,581	8,22	29,17	33,31
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,78	0,255	28,641	4,242	0,963	8,17	7,00	21,46	0,603	5,71	14,19	16,20
0,88	2,71	0,215	18,812	4,242	0,963	10,51	7,00	35,54	0,603	7,35	16,78	19,16
1,00	3,78	0,188	13,473	4,242	0,963	12,84	7,00	53,05	0,603	8,98	19,18	21,90
1,13	5,19	0,166	9,808	4,242	0,963	15,53	7,00	77,65	0,603	10,87	21,78	24,87
1,25	6,74	0,149	7,554	4,242	0,963	18,17	7,00	96,80	0,603	12,71	24,18	27,61
1,50	10,78	0,124	4,723	4,242	0,963	24,07	7,00	116,80	0,603	16,85	29,17	33,31

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 100R/825

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f_{y,k} =

320 N/mm²

Anlage 1.18.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

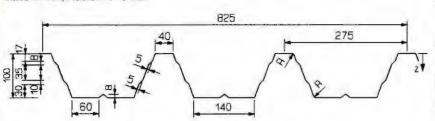
	Feldmo-		Endaufla	gerkraft ⁶	5)	Elast	tisch aufi	nehmbar	e Schnitt	größen a	n Zwisc	henaufla	gern 1) 2)	4) 5) 7)
blech-	ment			gomman		Quer-			Qua	dratisch	e Interal	ktion		
dicke						kraft		Stützm	omente		Zw	rischenau	uflagerkra	äfte
t _N		I _{a,A1} = 10 mm	I _{a,A2} = 40 mm	I _{a,A1} = 10 mm	l _{a.A2} = 40 mm		[B E	- mm	_{a,B} = 12	20 mm	I _{a,8} =	- mm	I _{a,8} = 13	20 mm
t _N		R _{T,w}	v,Rk,A	R _{G,v}	v,Rk,A	$V_{w,Rk}$	M ⁰ _{Rk,8}	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	R⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm				l/m		kN/m		kNr	n/m				l/m	
0,75	6,46	6,20	12,63	6,20	8,10				6,46	6,46	y	1	24,51	18,56
0,88	8,86	8,78	16,82	8,78	11,56				8,86	8,86			34,98	25,81
1,00	10,13	11,52	20,69	11,52	15,03				10,13	10,13			44,63	29,50
1,13	11,50	14,89	23,49	14,89	16,98	n.m.			11,50	11,50			50,67	33,49
1,25	12,76	18,34	26,09	18,34	18,78				12,76	12,76			56,23	37,18
1,50	15,40	26,62	37,98	26,62	27,34		1		15,40	15,40			67,85	44,86

Reststützmomente 8)

	l _{a,}	_B = - mm		l _{a,t}	= 120 mm		Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	
0,75			/	4,70	5,44	1,77	M _{R,Rk} = 0 für L≤min L
0,88				4,11	4,87	2,77	
1,00				4,82	5,55	3,17	$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
1,13				4,22	4,97	3,59	$M_{R,Rk} = \frac{L - min L}{max L - min L} \cdot max M_{R,Rk}$
1,25				4,21	4,96	3,99	
1,50				4,21	4,96	4,81	M _{R.Rk} = max M _{R.k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 112)

Nenn-	ech- ment	Ve	erbindung	g in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MA	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	6,56	42,47	-	7,21	-	-	42,47	21,24	-	3,61	-	-	21,24
0,88	8,07	67,24	-	9,03	-	-	67,24	33,62	(2)	4,52	1	-	33,62
1,00	9,51	86,59	-	10,89	-	-	86,59	43,30	-	5,44	-	_	43,30
1,13	11,12	109,87	-	12,94	-	-	109,87	54,93	-	6,47	-	-	54,93
1,25	12,54	133,71	-	14,92	-	-	133,71	66,86	-	7,46	-	-	66,86
1,50	15,13	190,61	_	18,00	-	-	190.61	95,31	_	9,00		_	95,31


SAB 100R/825

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Lan

Anlage 1.18.3 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter:

SACHSEN

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

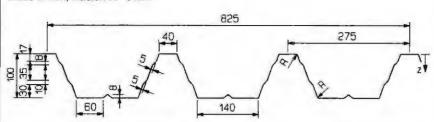
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ung ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt 12)	Einfeld- träger	Mehrfeld- träger
t _N	g	+ eff	I- _{eff}	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	ı⁴/m	cm ² /m	cr	n	cm²/m	cr	n		m
0,75	0,091	141,8	148,8	10,49	3,73	6,25	4,89	4,06	5,78	j	1
0,88	0,107	172,3	176,0	12,41	3,73	6,25	6,38	4,05	5,86	/	/
1,00	0,121	196,9	201,2	14,19	3,73	6,25	7,85	4,05	5,91		1 /
1,13	0,137	223,5	228,4	16,10	3,73	6,25	9,45	4,06	5,94		
1,25	0,152	248,0	253,6	17,88	3,72	6,25	10,98	4,05	5,99		
1,50	0,182	299,1	299,1	21.56	3,72	6,25	14,39	4,00	6,10		

Schubfeldwerte

			d dos Cobsos	abata, aliah	skalt 17)		(Grenzzus	tand der	Tragfäh	igkeit ¹⁸⁾	
	G	enzzustani	d der Gebrau	icristaugiici	ikeit "						_asteinleitu	ıng
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,I}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	' b,Ck	1.1	1 2	1, 1	1 2	'Rk,g	-R	" Rk,I	.,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10-4 - 1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	1,89	0,255	41,497	4,242	1,925	8,17	7,00	21,46	0,211	4,34	18,88	18,88
0,88	2,88	0,215	27,256	4,242	1,925	10,51	7,00	35,54	0,229	5,59	22,34	22,34
1,00	4,02	0,188	19,520	4,242	1,925	12,84	7,00	53,05	0,245	6,83	25,53	25,53
1,13	5,52	0,166	14,210	4,242	1,925	15,53	7,00	77,65	0,261	8,26	28,99	28,99
1,25	7,17	0,149	10,945	4,242	1,925	18,17	7,00	96,80	0,275	9,66	32,18	32,18
1,50	11,47	0,124	6,844	4,242	1,925	24,07	7,00	116,80	0,302	12,81	38,83	38,83
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	12,88	0,255	1,130	4,242	0,963	8,17	7,00	21,46	0,868	17,10	18,88	18,88
0,88	19,60	0,215	0,742	4,242	0,963	10,51	7,00	35,54	0,868	22,00	22,34	22,34
1,00	27,37	0,188	0,531	4,242	0,963	12,84	7,00	53,05	0,868	26,88	25,53	25,53
1,13	37,60	0,166	0,387	4,242	0,963	15,53	7,00	77,65	0,868	32,52	28,99	28,99
1,25	48,82	0,149	0,298	4,242	0,963	18,17	7,00	96,80	0,868	38,04	32,18	32,18
1,50	78,08	0,124	0,186	4,242	0,963	24,07	7,00	116,80	0,868	50,41	38,83	38,83

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 100R/825

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Anlage 1.18.4 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 FREISTAAT Bearbeiter: SACHSEN

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

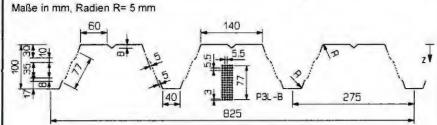
Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

	Feldmo-				E	Elastis	ch aufr	nehmb	are Sc	hnittgrö	ißen an	Zwische	nauflage	rn 1) 2) 4) !	5) 7)	
blech-	ment	End	18-34-	Quer-						Line	are Inte	eraktion				
dicke		lager	trant "	kraft		5	Stützm	omente	е			Zw	ischenau	ıflagerkrá	ifte	
t _N		_{a1} = 10 mm	_{a2} = 40 mm		_{a,8} = 4	0 mm	I _{a,B} = 6	60 mm	_{a,B} = 1	50 mm	I _{a,B} = 4	0 mm	I _{a 8} = 6	0 mm	I _{a B} = 16	60 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	Mº RKB	M _{c,Rk,B}	M ⁰ Rk.B	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,8}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN		kN/m			kNr	n/m					kN			
0,75	6,56	4,85	7,35		9,01	7,21	9,01	7,21	9,01	7,21	18,37	14,70	21,18	16,95	30,87	24,69
0,88	8,07	6,77	10,11		11,29	9,03	11,29	9,03	11,29	9,03	25,28	20,22	29,03	23,23	41,99	33,59
1,00	9,51	8,83	13,05		13,61	10,89	13,61	10,89	13,61	10,89	32,61	26,09	37,35	29,88	53,69	42,95
1,13	11,12	11,40	16,66	n.m.	16,17	12,94	16,17	12,94	16,17	12,94	41,66	33,33	47,57	38,06	67,96	54,37
1,25	12,54	14,10	20,42		18,65	14,92	18,65	14,92	18,65	14,92	51,06	40,85	58,17	46,53	82,68	66,14
1,50	15,13	20,81	29.66		22,50	18,00	22,50	18,00	22,50	18,00	74,16	59,33	84,10	67,28	118,4	94,73

Reststützmomente 8)

	l _{a,i}	₃ = 40 m	m	l _{a,8}	₃ = 60 m	m	l _{a,E}	= 160 m	ım	Reststützmomente M _{R,Rk}
I _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R.Rk} = 0 für L≤min L
										$M_{RRk} = \frac{L - \min L}{\max M_{RR}} \cdot \max M_{RR}$
										max L — min L
										M _{R Rk} = max M _{R k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)


		Ve	erbindung	j in jeden	n anliege	enden Gu	urt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	7,21	42,47	-	6,56	-	-	42,47	21,24	-	3,28	-	-	21,24
0,88	9,03	67,24	-	8,07	-	-	67,24	33,62	-	4,04	-	-	33,62
1,00	10,89	86,59	- 1	9,51	-	-	86,59	43,30	-	4,76	2	_	43,30
1,13	12,94	109,87	-	11,12		-	109,87	54,93	-	5,56		-	54,93
1,25	14,92	133,71	-	12,54	-	-	133,71	66,86	-	6,27	-	- 1	66,86
1,50	18,00	190,61	- 1	15,13	-	-)	190,61	95,31	-	7,57	-	-	95,31

SAB 100R/825 P3L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Anlage 1.19.1 zum Prüfbescheid

ALS TYPENENTWURF in baustatischer Hinsicht geprüft.

Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

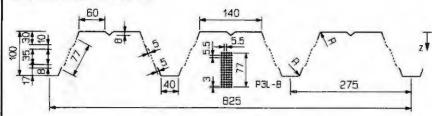
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	Jng ¹¹⁾		Norr	malkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g]+ eff	l _{eff}	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	i⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,082	115,4	126,7	7,99	4,04	3,54	3,74	4,42	4,34	3,00	3,75
0,88	0,097	141,8	154,7	9,46	4,04	3,54	4,92	4,41	4,24	4,55	5,65
1,00	0,110	166,9	176,8	10,81	4,04	3,54	6,10	4,40	4,17	6,05	7,55
1,13	0,124	194,7	200,7	12,27	4,04	3,54	7,46	4,38	4,10	6,65	8,30
1,25	0,137	220,9	222,7	13,62	4,04	3,54	8,75	4,37	4,03	7,05	8,80

Schubfeldwerte

	G	onzzuetono	d der Gebrau	chetaualich	kait 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	enzzustant	i dei Gebiau	icristaugiici	IKEIL						asteinleitu	ıng
t _N	T _{b,Ck}	K, ^{14) 15)}	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	- b,Ck	11	1 12	' 1	1 2	Rk,g	¯R	Rk,I	1,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10-4 · 1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbindi	ung in jedem	Untergurt								
0,75	1,27	0,255	51,637	4,242	1,925	7,54	7,00	21,46	0,405	1,90	13,53	16,51
0,88	1,94	0,215	33,916	4,242	1,925	9,70	7,00	35,54	0,441	2,45	16,00	19,53
1,00	2,71	0,188	24,290	4,242	1,925	11,85	7,00	53,05	0,471	2,99	18,29	22,32
1,13	3,72	0,166	17,682	4,242	1,925	14,33	7,00	77,65	0,502	3,62	20,76	25,34
1,25	4,83	0,149	13,619	4,242	1,925	16,76	7,00	96,80	0,529	4,23	23,05	28,13
Sonderb	efestigur	ng: Verbindi	ung mit 2 Sc	hrauben od	er verstärkte	er Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,21	0,255	41,945	4,242	0,963	7,54	7,00	21,46	0,603	3,90	13,53	16,51
0,88	1,85	0,215	27,551	4,242	0,963	9,70	7,00	35,54	0,603	5,02	16,00	19,53
1,00	2,58	0,188	19,731	4,242	0,963	11,85	7,00	53,05	0,603	6,13	18,29	22,32
4.40	3,54	0,166	14,364	4,242	0,963	14,33	7,00	77,65	0,603	7,42	20,76	25,34
1,13			11,063	4,242	0,963	16,76	7,00	96.80	0.603	8,68	23,05	28,13

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 100R/825 P3L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Landesstelle für Bautechnik Leipzig, den 05.08.2025 Leiter: Bearbeiter:

Anlage 1.19.2 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

FREISTAAT

SACHSEN

Nennstreckgrenze des Stahlkernes f

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

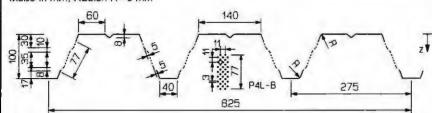
Nenn-	Feldmo-				i	Elastis	ch aufr	nehmb	are So	hnittgr	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	1	lauf- kraft ⁶⁾	Quer-						Line	eare Inte	eraktion				
dicke		lagen	Krait -	kraft		Stützme	oment	е			Zw	ischenau	ıflagerkr	äfte		
t _N I		I have a second	_{a2} = 40 mm		_{a,8} = 1	I0 mm	I _{a,B} = 6	0 mm	I _{a 8} = 1	60 mm	I _{a B} = 1	0 mm	I _{a B} = 6	0 mm	I _{aB} = 16	60 mm
t _N	M _{c,Rk,F}	R _w	,Rk,A	V _{w,Rk}	M ⁰ Rk,B	M _{c,Rk,B}	Mª Rk,8	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNr	n/m					kN	l/m		
0,75	6,21	2,86	4,34		6,97	5,58	6,97	5,58	6,97	5,58	7,16	5,73	12,50	10,00	18,22	14,58
0,88	7,89	4,05	6,06		8,65	6,92	8,65	6,92	8,65	6,92	10,14	8,11	17,39	13,91	25,15	20,12
1,00	9,49	5,32	7,86	n.m.	10,26	8,21	10,26	8,21	10,26	8,21	13,30	10,64	22,50	18,00	32,35	25,88
1,13	11,26	6,87	10,04		12,05	9,64	12,05	9,64	12,05	9,64	17,18	13,75	28,67	22,94	40,97	32,77
1,25	12,87	8,47	12.27		13.63	10.90	13.63	10.90	13.63	10,90	21,17	16,94	34,93	27,95	49,66	39,72

Reststützmomente 8)

	l _{a,l}	= 10 m	וחו	l _{a,i}	₃ = 60 m	ım	i _{a,E}	= 160 m	ım	Reststützmomente M _{R,Rk}
T _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										L - min L
										$M_{RRk} = \frac{L - min L}{max L - min L} \cdot max M_{RRk}$
										M _{R.Rk} = max M _{R.k} für L≥ max L
										N.O.

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn- Feldmo- blech- ment	Ve	erbindung	g in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	urt	
dicke	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion		
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	5,58	15,45	-	6,21	-	-	15,45	7,73	-	3,10	-	-	7,73
0,88	6,92	24,94	-	7,89	-	-	24,94	12,47	-	3,94	-	-	12,47
1,00	8,21	36,50	-	9,49	-	-	36,50	18,25	-	4,74	14	12 1	18,25
1,13	9,64	52,36	-	11,26	-	-	52,36	26,18	-	5,63	-	-	26,18
1,25	10,90	64,53	-	12,87	_	-	64,53	32,27	-	6,44	-	-	32,27


SAB 100R/825 P4L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.20.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter: SACHSEN

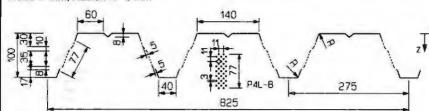
Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ung 11)		Norr	nalkraftbe	anspruchu	ıng		Grenzstü	tzweiten ¹³⁾
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	1 ⁺ eff	l- eff	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	ı⁴/m	cm²/m cm cm		cm²/m	cr	n		m	
0,75	0,087	120,7	132,7	8,96	3,90	3,63	4,18	4,26	4,28	4,00	5,00
0,88	0,102	148,2	161,6	10,60	3,90	3,63	5,48	4,25	4,20	5,55	6,90
1,00	0,116	174,4	184,7	12,12	3,90	3,63	6,78	4,24	4,14	6,30	7,85
1,13	0,131	203,5	209,7	13,76	3,90	3,63	8,26	4,23	4,08	6,80	8,50
1,25	0,145	230,8	232,7	15,27	3,90	3,63	9,62	4,23	4,03	7,25	9,05

Schubfeldwerte


		ronzzuotono	der Gebrau	obstauglish	skait 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	renzzustant	der Gebrau	icristaugiici	ikeil "					l	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K ₂ ^{14) 15)}	K*, 15)	K*, 15)	T 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	14	2	' 1	2	T _{Rk,g} 16)	R	' Rk,I	1.3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m²/kN	10 ⁻⁴ - 1/kN	10 ⁻⁴ m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	1,48	0,255	44,319	4,242	1,925	7,79	7,00	21,46	0,405	2,22	13,53	16,51
0,88	2,26	0,215	29,109	4,242	1,925	10,02	7,00	35,54	0,441	2,85	16,00	19,53
1,00	3,16	0,188	20,848	4,242	1,925	12,24	7,00	53,05	0,471	3,49	18,29	22,32
1,13	4,34	0,166	15,176	4,242	1,925	14,81	7,00	77,65	0,502	4,22	20,76	25,34
1,25	5,63	0,149	11,689	4,242	1,925	17,32	7,00	96,80	0,529	4,93	23,05	28,13
Sonderb	efestigur	ng: Verbindi	ung mit 2 Sc	hrauben od	er verstärkte	er Unterle	egschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,41	0,255	36,001	4,242	0,963	7,79	7,00	21,46	0,603	4,55	13,53	16,51
0,88	2,15	0,215	23,646	4,242	0,963	10,02	7,00	35,54	0,603	5,85	16,00	19,53
1,00	3,01	0,188	16,935	4,242	0,963	12,24	7,00	53,05	0,603	7,15	18,29	22,32
	4,13	0,166	12,328	4,242	0,963	14,81	7,00	77,65	0,603	8,65	20,76	25,34
1,13	4,10									1		

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".

SAB 100R/825 P4L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Maße in mm, Radien R= 5 mm Positivlage

Anlage 1.20.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

FREISTAAT SACHSEN

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

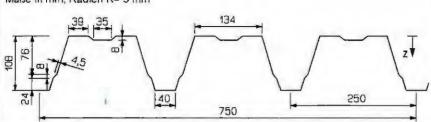
Nenn-	Feldmo-					Elastis	ch aufi	nehmb	are So	hnittgrö	ißen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment		lauf- kraft ⁶⁾	Quer-						Line	are Inte	raktion				
dicke		lageir	Mail	kraft		Stützmom			е			Zwi	ischenau	uflagerkra	äfte	
		(_{a1} = 10 mm	I _{a2} = 40 mm		I _{a.B} = 1	0 mm	_{a,B} = 6	60 mm	 	50 mm	l _{a,B} = 1	0 mm	I _{a,B} = 6	0 mm) _{a,8} = 19	50 mm
	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ^o _{Rk,B}	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	M ^a _{Rk,B}	M _{c,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R⁰ Rk.B	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m			kNr	n/m					kN	l/m		
0,75	6,60	4,31	6,53		7,46	5,97	7,46	5,97	7,46	5,97	10,77	8,62	18,81	15,05	26,71	21,37
0,88	8,33	6,10	9,11		9,22	7,38	9,22	7,38	9,22	7,38	15,25	12,20	26,16	20,93	36,88	29,51
1,00	10,00	8,01	11,83	n.m.	10,91	8,73	10,91	8,73	10,91	8,73	20,01	16,01	33,86	27,09	47,45	37,96
1,13	11,97	10,34	15,11		12,78	10,23	12,78	10,23	12,78	10,23	25,85	20,68	43,14	34,51	60,12	48,09
1,25	13,68	12,74	18,45		14,44	11,55	14,44	11,55	14.44	11.55	31,85	25,48	52.56	42.05	72.89	58.31

Reststützmomente 8)

	l _{a.i}	= 10 m	im	l _{a,f}	= 60 m	m	l _{a,E}	= 150 m	ım	Reststützmomente M _{R,Rk}
I _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
								_		M _{R,Rk} = 0 für L ≤ min L
										$M_{RRk} = \frac{L - \min L}{\max L - \min L} \cdot \max M$
										max E = min E
										M _{R.Rk} = max M _{R.k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

		Ve	erbindung	j in jeden	n anliege	enden Gu	rt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	5,97	24,64	12	6,60	-	-	24,64	12,32	-	3,30	121	-	12,32
0,88	7,38	39,67	-	8,33	-	-	39,67	19,83	10	4,17	-	-	19,83
1,00	8,73	58,01	-	10,00	-	-	58,01	29,01	-	5,00	-	_	29,01
1,13	10,23	73,88	-	11,97	-	-	73,88	36,94	L	5,98	-	-	36,94
1,25	11,55	90,01	-	13,68	-	-	90,01	45,01	-	6,84	-	-	45,01


SAB 106R+/750

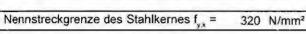
Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.21.1 zum Prüfbescheid


ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Bearbeiter: FREISTAAT

ACHSEN

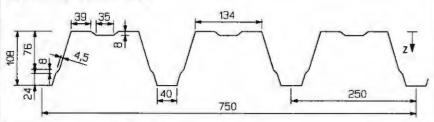
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten ¹³⁾
blech- dicke a)				nicht reduzierter Querschnitt wirksamer Querschnitt 12)					hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	t _N g nm kN/m²	I* eff	l- eff	A _g	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,70	0,093	162,6	160,1	10,61	3,96	4,19	4,91	4,57	4,67	-	-
0.75	0,100	186,6	174,5	11,41	3,96	4,19	5,51	4,58	4,67	4,70	5,88
0,88	0,117	219,7	211,5	13,50	3,96	4,19	7,56	4,52	4,56	7,40	9,26
1,00	0,133	250,3	241,6	15,43	3,96	4,19	9,61	4,47	4,47	9,90	12,38
1,13	0,151	276,6	274,2	17,51	3,96	4,19	12,00	4,41	4,39	11,24	14,05
1,25	0,167	307,0	304,3	19,44	3,96	4,19	14,22	4,36	4,36	12,48	15,60
1,50	0,200	370,2	367,0	23,45	3,96	4,19	18,60	4,25	4,31	15,06	18,82

Schubfeldwerte

	0.	containatan	d der Gebrau	obotovaliol	alcoit 17)		(Grenzzus	tand der	Tragfähi	gkeit 18)	
4	G	enzzustand	i der Gebrau	ichstauglici	ikeit "						asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	- b,Gk	. 4	2	1 1	2	"Rk,g	TR .	Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10-4-1/kN	10-4 · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalt	efestigur	ng: Verbindi	ung in jedem	Untergurt			16-					
0,70	1,44	0,302	51,505	4,667	1,750	8,33	7,00	18,82	0,420	2,50	12,57	16,73
0,75	1,72	0,281	42,911	4,667	1,750	9,30	7,00	23,43	0,436	2,79	13,53	18,00
0,88	2,62	0,238	28,185	4,667	1,750	11,96	7,00	38,79	0,474	3,60	16,00	21,29
1,00	3,67	0,208	20,185	4,667	1,750	14,61	7,00	57,91	0,507	4,39	18,29	24,34
1,13	5,03	0,183	14,694	4,667	1,750	17,67	7,00	84,76	0,540	5,32	20,76	27,63
1,25	6,54	0,165	11,317	4,667	1,750	20,66	7,00	96,80	0,569	6,22	23,05	30,67
1,50	10,45	0,137	7,077	4,667	1,750	27,37	7,00	116,80	0,625	8,24	27,81	37,01
Sonderb	efestigur	ng: Verbindi	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,70	1,36	0,302	42,697	4,667	0,875	8,33	7,00	18,82	0,679	4,88	12,57	16,73
0,75	1,63	0,281	35,572	4,667	0,875	9,30	7,00	23,43	0,679	5,45	13,53	18,00
0,88	2,48	0,238	23,364	4,667	0,875	11,96	7,00	38,79	0,679	7,01	16,00	21,29
1,00	3,46	0,208	16,733	4,667	0,875	14,61	7,00	57,91	0,679	8,57	18,29	24,34
1,13	4,75	0,183	12,181	4,667	0,875	17,67	7,00	84,76	0,679	10,36	20,76	27,63
1,25	6,17	0,165	9,382	4,667	0,875	20,66	7,00	96,80	0,679	12,12	23,05	30,67
1,50	9,87	0,137	5,866	4,667	0,875	27,37	7,00	116,80	0,679	16,07	27,81	37,01

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 106R+/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.21.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

FREISTAAT Bearbeiter:

Nennstreckgrenze des Stahlkernes f_{y,k} = 320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

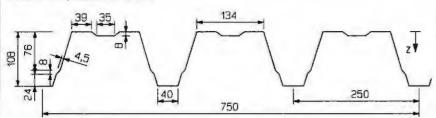
Nenn-	Feldmo-		Endaufla	gerkraft ⁽	5)	Elas	tisch auf	nehmbar	e Schnitt	tgrößen	an Zwisc	henaufla	gern 1) 2)	4) 5) 7)
blech-	ment			goman		Quer-			L	ineare l	nteraktio	n		
dicke						kraft		Stützm	omente		Zw	ischenau	ıflagerkr	äfte
		I _{a.A1} = 10 mm	I _{a,A2} = 40 mm	I _{a,A1} = 10 mm	I _{a.A2} = 40 mm		I _{a,8} = 6	60 mm	I _{a.B} =	- mm	I _{a,8} = 6	0 mm	t _{a,B} =	- mm
	M _{c,Rk,F}	R _{T,v}	v,Rk,A	R _{G,v}	w,Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
	kNm/m			l/m		kN/m		kNr	n/m			kN	/m	
0,70	8,68	4,39	17,23	4,39	17,23		8,98	5,87			28,03	17,25		
0,75	10,05	5,28	19,93	5,28	19,93		10,39	6,80			32,43	19,96		
0,88	13,41	7,91	29,26	7,91	29,26		13,07	9,47			53,48	29,14		
1,00	16,51	10,77	37,86	10,77	37,86	n.m.	15,54	11,94			72,90	37,61		
1,13	19,06	14,31	47,50	14,31	47,50		19,09	14,33		1	78,39	47,10		11/
1,25	21,42	17,98	56,40	17,98	56,40		22,37	16,53		/	83,47	55,87	5	y
1,50	25,84	26,86	68,05	26,86	68,05		26,99	19,94		V	100,71	67,41	V	,

Reststützmomente 8)

	l _{a,i}	= 60 mm		l _{a,t}	= - mm		Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	
0,70	-	-	-			/	M _{RRk} = 0 für L≤min L
0,75	8,67	9,60	1,91				
0,88	8,11	9,05	2,78				$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
1,00	7,60	8,55	3,58				$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
1,13	7,74	8,69	4,06				
1,25	7,87	8,81	4,49		1		M _{R.Rk} = max M _{R.k} für L ≥ max L
1,50	7,87	8,81	5,42				

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

	Feldmo-	Ve	erbindung	j in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden C	Gurt
blech- dicke	ment	Endauf- lagerkraft M/V- Interaktion				Endauf- lagerkraft		MA	/- Intera	ktion			
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	FR _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,70	6,86	35,78	-	8,47	-	-	35,78	17,89	-	4,23	-	-	17,89
0,75	7,69	43,95	-	9,63	-	-	43,95	21,97	-	4,81	-	-	21,97
0,88	9,57	70,62	_	12,23	-	-	70,62	35,31	-	6,12	-	_	35,31
1,00	11,26	96,20	-	14,58	-	-	96,20	48,10	-	7,29	-	-	48,10
1,13	13,12	122,72	_	17,08	-	-	122,72	61,36	-	8,54		-	61,36
1,25	14,74	149,97	-	19,30	-	-	149,97	74,99	_	9,65	_		74,99
1.50	17.77	215 22	_	23.74	_	_	215.22	107.61		11.87		_	107.61


SAB 106R+/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.21.3 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter: FREISTAAT

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

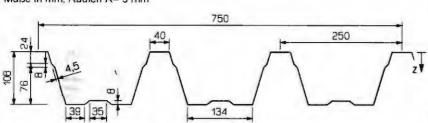
Nenn-	Feldmo-		-ndaufla	gerkraft ⁶	3)	Elast	isch auf	nehmbar	e Schnit	tgrößen a	an Zwisc	henaufla	igern 1) 2)	4) 5) 7)
blech-	ment			goman		Quer-			Qua	dratisch	e Intera	ktion		
dicke						kraft		Stützm	omente		Zw	ischena	uflagerkr	äfte
		I _{a,A1} = 10 mm	I _{a.A2} = 40 mm	I _{a,A1} = 10 mm	I _{a,A2} = 40 mm		l _{a.B} =	- mm	I _{a,B} = 1	60 mm	_{aB} =	- mm	J _{a,B} = 10	30 mm
t _N	M _{c,Rk,F}	R _{T,v}	v,Rk,A	R _{G,v}	v,Rk,A	V _{w,Rk}	M ^o Rk,B	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m			l/m		kN/m		kNr	n/m				l/m	
0,70	8,68	4,39	17,23	4,39	17,23		1		7,92	7,13	/	1	37,26	23,64
0,75	10,05	5,28	19,93	5,28	19,93				9,16	8,25	1	1	43,12	27,36
88,0	13,41	7,91	29,26	7,91	29,26				11,94	10,99	1		59,10	36,66
1,00	16,51	10,77	37,86	10,77	37,86	n.m.	/	,	14,50	13,52			73,84	45,25
1,13	19,06	14,31	47,50	14,31	47,50		1		17,12	16,25			100,53	57,32
1,25	21,42	17,98	56,40	17,98	56,40		1		19,54	18,77			125,17	68,46
1,50	25,84	26,86	68,05	26,86	68,05		1	/	23,58	22,65	/		151,03	82,60

Reststützmomente 8)

	l _{a,i}	_a = - mm		l _{a,E}	= 160 mm		Reststützmomente M _{R,Rk}				
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}					
mm	m	m	kNm/m	m	m	kNm/m					
0,70			/	-	-	1-1	M _{R.Rk} = 0 für L≤min L				
0,75				5,41	6,42	3,07					
0,88				6,01	7,00	3,63	$M_{R,Rk} = \frac{L - \min L}{\max L \min L} \cdot \max M_{R,Rk}$				
1,00				6,56	7,54	4,16	$M_{R,Rk} = \frac{L - min L}{max L - min L} \cdot max M_{R,Rk}$				
1,13				6,29	7,28	5,04					
1,25				6,05	7,04	5,85	$M_{R,Rk} = \max M_{R,k}$ für $L \ge \max L$				
1,50				6,05	7,04	7,06					

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	ment	Ve	erbindung	j in jeden	n anliege	enden Gu	Verbindung in jedem 2. anliegenden Gurt							
blech- dicke		Endauf- lagerkraft		M/\	/- Intera	ktion		Endauf- lagerkraft	M/V- Interaktion					
t _N		R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	$R^{o}_{Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$	
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	
0,70	6,86	35,78	1-	8,47	-	-	35,78	17,89	-	4,23	-	-	17,89	
0,75	7,69	43,95	-	9,63	-	-	43,95	21,97	-	4,81	4	-	21,97	
0,88	9,57	70,62	-	12,23	-	-	70,62	35,31	_	6,12	-	12	35,31	
1,00	11,26	96,20	-	14,58	-	-	96,20	48,10	2 1	7,29	-	-	48,10	
1,13	13,12	122,72	-	17,08	-	-	122,72	61,36	-	8,54	-	-	61,36	
1,25	14,74	149,97	-	19,30	-	-	149,97	74,99	-	9,65	-	-	74,99	
1,50	17,77	215.22		23,74			215,22	107,61	-	11,87		-	107,61	


SAB 106R+/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f_{v,k} =

320 N/mm²

Anlage 1.21.4 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025
Leiter: Bearbeiter:
FREISTAAT
SACHSEN

Maßgebende Querschnittswerte

Nenn- blech- dicke	Eigenlast g	Biegung 11)			Norr	Grenzstützweiten 13)					
				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	Einfeld- träger	Mehrfeld- träger	
t _N		I+ eff	I- eff	A _g	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	Lgr	L _{gr}
mm	kN/m²	cm⁴/m		cm²/m cm		cm ² /m cm			m		
0,70	0,093	160,1	162,6	10,61	3,96	6,61	4,91	4,57	6,13	=	-
0,75	0,100	174,5	186,6	11,41	3,96	6,61	5,51	4,58	6,13	4,20	5,25
0,88	0,117	211,5	219,7	13,50	3,96	6,61	7,56	4,52	6,24	7,16	8,96
1,00	0,133	241,6	250,3	15,43	3,96	6,61	9,61	4,47	6,33	9,90	12,38
1,13	0,151	274,2	276,6	17,51	3,96	6,61	12,00	4,41	6,41	11,24	14,05
1,25	0,167	304,3	307,0	19,44	3,96	6,61	14,22	4,36	6,44	12,48	15,60
1,50	0,200	367,0	370,2	23,45	3,96	6,61	18,60	4,25	6,49	15,06	18,82

Schubfeldwerte

	G	renzzuetano	d der Gebrau	chetauglich	okait 17)	Grenzzustand der Tragfähigkeit 18)								
	0	TENZZUSTAN	dei Gebiat	iciistaugiici	ikell '					Lasteinleitung				
t _N	T _{b,Ck}	K, 14) 15)	K ₂ ^{14) 15)}	K*, 15)	K* ₂ 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥		
	b,Gk	' '1	2								130 mm	280 mm		
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m ² /kN	10⁴ ·1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN		
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt										
0,70	1,52	0,302	56,198	4,667	1,750	8,33	7,00	18,82	0,221	3,98	19,50	19,50		
0,75	1,82	0,281	46,820	4,667	1,750	9,30	7,00	23,43	0,229	4,44	20,98	20,98		
0,88	2,78	0,238	30,753	4,667	1,750	11,96	7,00	38,79	0,249	5,71	24,82	24,82		
1,00	3,88	0,208	22,024	4,667	1,750	14,61	7,00	57,91	0,267	6,97	28,37	28,37		
1,13	5,32	0,183	16,033	4,667	1,750	17,67	7,00	84,76	0,284	8,44	32,21	32,21		
1,25	6,91	0,165	12,349	4,667	1,750	20,66	7,00	96,80	0,299	9,87	35,76	35,76		
1,50	11,06	0,137	7,721	4,667	1,750	27,37	7,00	116,80	0,329	13,08	43,14	43,14		
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾				
0,70	8,42	0,302	2,052	4,667	0,875	8,33	7,00	18,82	1,044	14,09	19,50	19,50		
0,75	10,11	0,281	1,710	4,667	0,875	9,30	7,00	23,43	1,044	15,73	20,98	20,98		
0,88	15,39	0,238	1,123	4,667	0,875	11,96	7,00	38,79	1,044	20,24	24,82	24,82		
1,00	21,49	0,208	0,804	4,667	0,875	14,61	7,00	57,91	1,044	24,72	28,37	28,37		
1,13	29,51	0,183	0,585	4,667	0,875	17,67	7,00	84,76	1,044	29,91	32,21	32,21		
1,25	38,32	0,165	0,451	4,667	0,875	20,66	7,00	96,80	1,044	34,99	35,76	35,76		
1,50	61,28	0,137	0,282	4,667	0,875	27,37	7,00	116,80	1,044	46,37	43,14	43,14		

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".

SAB 106R+/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Negativlage

Maße in mm, Radien R= 5 mm

750

250

134

Anlage 1.21.5 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025

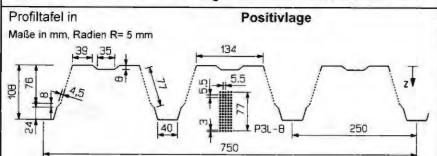
Nennstreckgrenze des Stahlkernes f_{vk} = 3

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	ment	Endauf- lagerkraft ⁶⁾		Elastisch aufnehmbare Schnittgrößen an Zwischenauflagern 1) 2) 4) 5) 7)													
blech-				Quer-	Lineare Interaktion												
dicke				kraft	Stützmomente						Zw	ischenau	ıflagerkr	äfte			
			l _{a2} = 40 mm			I _{a,B} = 10 mm I _{a,B} =		60 mm I _{a,e} = 1		l _{a,8} = 160 mm		I _{a B} = 10 mm		l _{aB} = 60 mm		60 mm	
t _N	M _{c,Rk,F}	M _{c,Rk,F} R _{w,Rk,A} V		V _{w,Rk}	Mº Rk,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,8}	R _{w,Rk,8}	R ⁰ _{Rk,B}	$R_{w,Rk,B}$	
mm	kNm/m		/m	kN/m	kNm/m								kN	l/m			
0,70	6,86	4,39	6,70		10,58	8,47	10,58	8,47	10,58	8,47	10,98	8,79	19,33	15,46	28,25	22,60	
0,75	7,69	5,28	8,00		12,03	9,63	12,03	9,63	12,03	9,63	13,20	10,56	23,05	18,44	33,58	26,87	
0,88	9,57	7,72	11,53	n.m.	15,29	12,23	15,29	12,23	15,29	12,23	19,30	15,44	33,12	26,50	47,90	38,32	
1,00	11,26	10,08	14,89		18,22	14,58	18,22	14,58	18,22	14,58	25,21	20,16	42,64	34,11	61,29	49,03	
1,13	13,12	13,03	19,04		21,35	17,08	21,35	17,08	21,35	17,08	32,57	26,06	54,35	43,48	77,66	62,13	
1,25	14,74	16,13	23,36		24,12	19,30	24,12	19,30	24,12	19,30	40,32	32,25	66,52	53,22	94,56	75,65	
1,50	17,77	23,85	33,99		29,67	23,74	29,67	23,74	29,67	23,74	59,62	47,70	96,38	77,11	135,71	108,57	

Reststützmomente 8)


	l _{a,l}	= 10 m	m	l _{a.i}	= 60 m	rn	l _{a,E}	= 160 m	m	Reststützmomente M _{R,Rk}			
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}				
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m				
										M _{R,Rk} = 0 für L ≤ min L			
										$M_{RRk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$			
										max E = min E			
	_								114 111	M _{R.Rk} = max M _{Rk} für L≥ max L			

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	Feldmo- ment	Ve	rbindung	j in jeden	n anliege	enden Gu	ırt	Verbindung in jedem 2. anliegenden Gurt						
dicke		Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft	M/V- Interaktion					
	M _{c,Rk,F}	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	Rº Rk,B	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{\rm w,Rk}$	
mm	kNm/m	kN/m	kNm/m		kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	
0,70	8,47	35,78	-	6,86	-	-	35,78	17,89	-	3,43	-	-	17,89	
0,75	9,63	43,95	-	7,69	-	-	43,95	21,97	-	3,85	-	-	21,97	
0,88	12,23	70,62	-	9,57	-	-	70,62	35,31	-	4,79	-	-	35,31	
1,00	14,58	96,20	-	11,26	1.2	-	96,20	48,10	-	5,63	-	-	48,10	
1,13	17,08	122,72	-	13,12	-	-	122,72	61,36	-	6,56	-	-	61,36	
1,25	19,30	149,97	(2)	14,74	-	-	149,97	74,99	-	7,37	-	-	74,99	
1.50	23.74	215.22	_	17.77	_	-	215.22	107.61	14	8.89	-	-	107,61	

SAB 106R+/750 P3L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1.22.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter:

SACHSEN

Nennstreckgrenze des Stahlkernes f_{y,k} = 320 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten ¹³⁾
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	l-	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	Lgr
mm	kN/m²	cm	4/m	cm ² /m cm cm		cm²/m	CI	n		m	
0,70	0,085	159,7	147,3	8,27	4,31	4,12	4,08	4,82	4,76		-
0,75	0,091	184,9	160,8	8,90	4,31	4,12	4,61	4,82	4,77	4,20	5,25
0,88	0,106	209.3	195,7	10,52	4,31	4,12	6,28	4,77	4,65	7,16	8,96
1,00	0,121	231,8	223,6	12,03	4,31	4,12	7,92	4,74	4,53	9,90	12,38
1,13	0,137	260,8	253,9	13,66	4,31	4,12	9,82	4,70	4,43	11,24	14,05
1,25	0,151	287,6	281,8	15,16	4,31	4,11	11,54	4,67	4,38	12,48	15,60
1,50	0,181	347,0	339,8	18,29	4,31	4,11	14,98	4,59	4,30	15,06	18,82

Schubfeldwerte

	G	renzzuetano	der Gebrau	chetaualick	rkait 17)		(Grenzzus	tand der	Tragfähi	gkeit 18)	
	0	CHZZUStant	dei Oebiau	ciistaugiici	INGIL					I	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, ¹⁵⁾	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	B,CR	1			. 2	* Rk,g	-R	Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ m ² /kN	10⁴ ·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	1	kN/m	kN	kN
Normalb	efestigur	ng: Verbindi	ung in jedem	Untergurt								
0,70	0,99	0,302	74,536	4,667	1,750	7,86	7,00	13,53	0,420	1,73	12,57	16,73
0,75	1,19	0,281	62,098	4,667	1,750	8,77	7,00	16,66	0,436	1,93	13,53	18,00
0,88	1,81	0,238	40,787	4,667	1,750	11,28	7,00	26,92	0,474	2,48	16,00	21,29
1,00	2,53	0,208	29,211	4,667	1,750	13,78	7,00	39,44	0,507	3,04	18,29	24,34
1,13	3,48	0,183	21,265	4,667	1,750	16,67	7,00	56,76	0,540	3,67	20,76	27,63
1,25	4,52	0,165	16,378	4,667	1,750	19,50	7,00	73,91	0,569	4,30	23,05	30,67
1,50	7,22	0,137	10,241	4,667	1,750	25,84	7,00	106,36	0,625	5,69	27,81	37,01
Sonderb	efestigur	ng: Verbindu	ung mit 2 Scl	nrauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,70	0,94	0,302	61,788	4,667	0,875	7,86	7,00	13,53	0,679	3,37	12,57	16,73
0,75	1,12	0,281	51,478	4,667	0,875	8,77	7,00	16,66	0,679	3,76	13,53	18,00
0,88	1,71	0,238	33,812	4,667	0,875	11,28	7,00	26,92	0,679	4,84	16,00	21,29
1,00	2,39	0,208	24,215	4,667	0,875	13,78	7,00	39,44	0,679	5,92	18,29	24,34
1,13	3,28	0,183	17,628	4,667	0,875	16,67	7,00	56,76	0,679	7,16	20,76	27,63
1,25	4,26	0,165	13,577	4,667	0,875	19,50	7,00	73,91	0,679	8,38	23,05	30,67
1,50	6,82	0,137	8,490	4,667	0,875	25,84	7,00	106,36	0,679	11,10	27,81	37,01

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".

SAB 106R+/750 P3L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1.22.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

eiter: Bearbeiter:

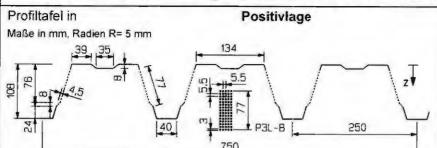
Nennstreckgrenze des Stahlkernes f

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-		Endaufla	gerkraft ⁶	5)	Elas	tisch aufi	nehmbar	e Schnitt	tgrößen :	an Zwisc	henaufla	gern 1) 2)	4) 5) 7)
blech-	ment			gondan		Quer-			L	ineare l	nteraktio	n		
dicke						kraft		Stützm	omente		Zw	ischenau	ıflagerkr	äfte
t, i		l _{a,A1} = 10 mm	I _{a,A2} = 40 mm	I _{a,A1} = 10 mm	I _{a,A2} = 40 mm		l _{a.B} = 6	0 mm	I _{a,B} =	- mm	I _{a,B} = 6	0 mm	_{a,B} =	- mm
t _N	M _{c,Rk,F}	R _{T,v}	v.Rk,A	R _{G,v}	v,Rk,A	V _{w,Rk}	Mº Rk,B	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m			l/m		kN/m		kNr	n/m			kN	/m	
0,70	8,33	2,78	11,04	2,78	11,04		8,08	4,74	1	1	18,92	13,63		
0,75	9,64	3,25	12,78	3,25	12,78		9,36	5,49	1	/	21,90	15,77		
0,88	12,60	4,62	19,30	4,62	19,30		11,55	7,72			36,28	22,46		
1,00	15,33	6,08	25,32	6,08	25,32	n.m.	13,57	9,79			49,55	28,64		1
1,13	17,32	7,87	33,11	7,87	33,11		15,35	11,67	/		67,32	35,67		
1,25	19,15	9,72	40,31	9,72	40,31		16,99	13,40		1/	83,73	42,16	/	1
1,50	23,11	14,13	48,64	14,13	48,64		20,50	16,17	/		101,03	50,87	X	/

Reststützmomente 8)


	l _{a,l}	_B = 60 mm	1	l _{a,t}	= - mm		Reststützmomente $M_{R,Rk}$
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	
0,70	-	-	-				M _{R.Rk} = 0 für L≤min L
0,75	9,85	10,77	1,61				
0,88	9,52	10,44	2,20		,		$M_{R,Rk} = \frac{L - \min L}{\max M_{R,Rk}} \cdot \max M_{R,Rk}$
1,00	9,21	10,13	2,74				$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
1,13	8,71	9,64	3,31				
1,25	8,24	9,18	3,83				M _{R,Rk} = max M _{R,k} für L≥ max L
1,50	8,24	9,18	4,62				

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-		Ve	erbindung	j in jeden	n anlieg	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,70	6,24	13,53	-	7,50	-	-	13,53	6,77	-	3,75	-	-	6,77
0,75	6,98	16,66	-	8,49	-	-	16,66	8,33	1	4,25	04.	-	8,33
0,88	8,65	26,92	-	11,06	-	-	26,92	13,46	-	5,53	-	-	13,46
1,00	10,22	39,44	-	13,14	-	-	39,44	19,72	(-	6,57	-	-	19,72
1,13	11,96	56,76	-	15,32	-	-	56,76	28,38	-	7,66	- E	-	28,38
1,25	13,49	73,91	-	17,25	-	-	73,91	36,96	-	8,62	-	-	36,96
1,50	16,26	106,36	-	21,10	-	-	106,36	53,18	-	10,55	14	-	53,18

SAB 106R+/750 P3L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1.22.3 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

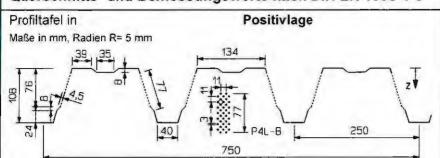
Nennstreckgrenze des Stahlkernes f, =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-		-ndaufla	gerkraft ⁶	5)	Elas	tisch auf	nehmbar	e Schnit	tgrößen a	an Zwisc	henaufla	igern 1) 2)	4) 5) 7)
blech-	ment			gonnan		Quer-			Qua	dratisch	e Intera	ktion		
dicke				,		kraft		Stützm	omente		Zw	rischena	uflagerkra	äfte
		I _{a,A1} = 10 mm	I _{a.A2} = 40 mm	l _{a,A1} = 10 mm	I _{a,A2} = 40 mm		I _{aB} =	- mm	I _{a,B} = 1	60 mm	J _{a,8} =	- mm	I _{e,B} = 16	30 mm
t _N	M _{c,Rk,F}	R _{T,w}	,Rk,A	R _{G,}	w,Rk,A	V _{w,Rk}	M ^o _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m			l/m		kN/m		kNr	n/m			_	l/m	
0,70	8,33	2,78	11,04	2,78	11,04		7		6,43	5,51			24,06	16,68
0,75	9,64	3,25	12,78	3,25	12,78				7,44	6,38			27,84	19,30
0,88	12,60	4,62	19,30	4,62	19,30				9,66	8,72			43,36	27,93
1,00	15,33	6,08	25,32	6,08	25,32	n.m.			11,72	10,88	1		57,69	35,90
1,13	17,32	7,87	33,11	7,87	33,11				14,05	13,20			73,67	44,51
1,25	19,15	9,72	40,31	9,72	40,31				16,20	15,35		1	88,42	52,46
1,50	23,11	14,13	48,64	14,13	48,64			V	19,54	18,52		V	106,69	63,30

Reststützmomente 8)


	l _{a,t}	_B = - mm	1	l _{a,i}	_B = 160 mm		Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	
0,70			/	-	-	-	M _{R.Rk} = 0 für L≤min L
0,75				8,82	9,75	1,80	
0,88				8,68	9,61	2,40	$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
1,00).			8,55	9,49	2,95	$M_{R,Rk} = \frac{L - min L}{max L - min L} \cdot max M_{R,Rk}$
1,13				7,75	8,70	3,76	
1,25				7,02	7,98	4,51	M _{R.Rk} = max M _{R.k} für L≥ max L
1,50				7,02	7,98	5,44	

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

		Ve	erbindung	j in jeden	n anliege	enden Gu	urt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MA	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ Rk,B	M _{c,Rk,B}	$R^0_{Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,8}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,70	6,24	13,53	-	7,50	-	-	13,53	6,77	1	3,75	-	-	6,77
0,75	6,98	16,66	-	8,49	-	-	16,66	8,33	1.2	4,25		-	8,33
0,88	8,65	26,92	-	11,06	-	-	26,92	13,46	-	5,53	-	4	13,46
1,00	10,22	39,44	- 1	13,14	-	-	39,44	19,72	-	6,57	4	-	19,72
1,13	11,96	56,76	-	15,32	-	-	56,76	28,38	-	7,66		-	28,38
1,25	13,49	73,91	- 1	17,25	-	-	73,91	36,96	-	8,62	-	-	36,96
1,50	16,26	106,36	-	21,10	_	-	106,36	53,18	-	10,55	-		53,18

SAB 106R+/750 P4L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1.23.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

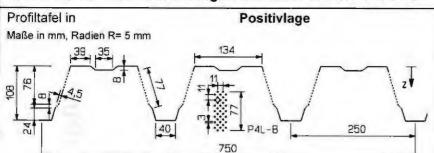
Leipzig, den 05.08.2025 eiter: FREISTAAT Bearbeiter:

SACHSEN X

Nennstreckgrenze des Stahlkernes f_{yk} = 320 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	l-	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	4/m	cm ² /m cm cm ²		cm²/m	СГ	n		m	
0,70	0,089	154,3	152,9	9,22	4,16	4,16	4,39	4,72	4,73	-	u u
0,75	0,095	175,2	166,7	9,92	4,16	4,16	4,95	4,72	4,74	4,20	5,25
0,88	0,112	206,1	202,6	11,74	4,15	4,16	6,77	4,67	4,62	7,16	8,96
1,00	0,127	234,7	231,5	13,41	4,15	4,16	8,56	4,63	4,51	9,90	12,38
1,13	0,144	265,6	262,8	15,23	4,15	4,15	10,64	4,59	4,42	11,24	14,05
1,25	0,159	294,2	291,7	16,91	4,15	4,15	12,56	4,55	4,37	12,48	15,60
1,50	0,191	355,0	351,8	20,40	4,15	4,15	16,47	4,45	4,31	15,06	18,82


Schubfeldwerte

			d da- Cabasa	امالات بمامات	stenia 17)		(renzzus	tand der	Tragfähi	igkeit 18)	
4	G	enzzustant	d der Gebrau	cnstaugher	ikeit "					1	_asteinleitu	ing
t _N	T _{b,Ck}	K, ^{14) 15)}	K, 14) 15)	K*, 15)	K* 15)	T 16)	L _R 16)	T _{Rk,I}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	* b,Ck	1,1	2	1	2	T _{Rk,g} 16)	_R	"Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10⁴·1/kN	10 ⁻⁴ -m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,70	1,15	0,302	64,230	4,667	1,750	8,07	7,00	18,82	0,420	2,01	12,57	16,73
0,75	1,38	0,281	53,512	4,667	1,750	9,00	7,00	23,43	0,436	2,24	13,53	18,00
0,88	2,10	0,238	35,148	4,667	1,750	11,58	7,00	38,79	0,474	2,88	16,00	21,29
1,00	2,94	0,208	25,172	4,667	1,750	14,15	7,00	57,91	0,507	3,52	18,29	24,34
1,13	4,04	0,183	18,324	4,667	1,750	17,11	7,00	83,19	0,540	4,26	20,76	27,63
1,25	5,24	0,165	14,113	4,667	1,750	20,01	7,00	96,80	0,569	4,99	23,05	30,67
1,50	8,38	0,137	8,825	4,667	1,750	26,52	7,00	116,80	0,625	6,61	27,81	37,01
Sonderb	efestigur	ng: Verbind	ung mit 2 Scl	hrauben od	er verstärkte	er Unterle	egsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,70	1,09	0,302	53,245	4,667	0,875	8,07	7,00	18,82	0,679	3,92	12,57	16,73
0,75	1,30	0,281	44,360	4,667	0,875	9,00	7,00	23,43	0,679	4,37	13,53	18,00
0,88	1,99	0,238	29,137	4,667	0,875	11,58	7,00	38,79	0,679	5,62	16,00	21,29
1,00	2,77	0,208	20,867	4,667	0,875	14,15	7,00	57,91	0,679	6,87	18,29	24,34
1,13	3,81	0,183	15,190	4,667	0,875	17,11	7,00	83,19	0,679	8,31	20,76	27,63
1,25	4,95	0,165	11,700	4,667	0,875	20,01	7,00	96,80	0,679	9,72	23,05	30,67
1,50	7,91	0,137	7,316	4,667	0,875	26,52	7,00	116,80	0,679	12,88	27,81	37,01

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".

SAB 106R+/750 P4L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1.23.2 zum Prüfbescheid
ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

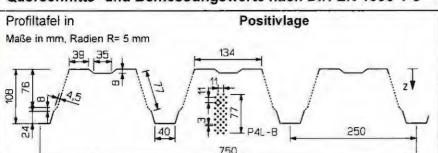
Nennstreckgrenze des Stahlkernes f_{vk} = 320

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-		Endaufla	gerkraft ^t	5)	Elas	tisch aufi	nehmbar	e Schnit	größen	an Zwisc	henaufla	gern 1) 2)	4) 5) 7)
blech- dicke	ment			gonnan		Quer-			L	ineare l	nteraktio	n		
dicke						kraft		Stützm	omente		Zw	ischenau	ıflagerkr	äfte
		l _{a,A1} = 10 mm	I _{a.A2} = 40 mm	I _{a.A1} = 10 mm	I _{a,A2} = 40 mm		I, s = 6	60 mm) _{a,B} =	- mm	l _{a,B} = 6	0 mm	_{a,B} =	- mm
t _N	M _{c,Rk,F}	R	v,Rk,A	R _{G,s}	v,Rk,A	V _{w,Rk}	M ⁰ Rk,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		kN	/m		kN/m		kNr	n/m				/m	
0,70	8,24	4,15	12,15	4,15	12,15		8,08	4,74	1	1	20,82	14,99		
0,75	9,53	4,85	14,05	4,85	14,05		9,36	5,49			24,09	17,35		
0,88	12,09	6,89	21,23	6,89	21,23		11,55	7,72	r 7		39,91	24,71		
1,00	14,45	9,07	27,85	9,07	27,85	n.m.	13,57	9,79			54,51	31,50		
1,13	17,00	11,74	36,42	11,74	36,42		15,35	11,67			74,05	39,23		
1,25	19,36	14,49	44,34	14,49	44,34		16,99	13,40		1	92,10	46,38		1/
1,50	23,36	21,07	53,50	21,07	53,50		20,50	16,17	/	V	111,13	55,96	1	

Reststützmomente 8)


	l _a	_e = 60 mm		l _{a,t}	_B = - mm	1	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	
0,70	-		-				M _{R.Rk} = 0 für L≤min L
0,75	9,85	10,77	1,61				
0,88	9,52	10,44	2,20				M _ L — min LM
1,00	9,21	10,13	2,74			1	$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
1,13	8,71	9,64	3,31				
1,25	8,24	9,18	3,83				M _{R.Rk} = max M _{R,k} für L≥ max L
1,50	8,24	9,18	4,62				

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-		Ve	erbindung	j in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	iurt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MA	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ^Q _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,70	6,52	21,02	-	7,85	-	-	21,02	10,51		3,93	-	-	10,51
0,75	7,30	25,85	-	8,91	-	-	25,85	12,92	-	4,45	-	-	12,92
0,88	9,05	41,65	-	11,56	-	-	41,65	20,83	-	5,78	-	- 1	20,83
1,00	10,67	60,90	_	13,77	_		60,90	30,45	14	6,89	-	-	30,45
1,13	12,47	83,19	-	16,12	-	-	83,19	41,59	-	8,06	-		41,59
1,25	14,04	101,74	-	18,19	-	14	101,74	50,87	_	9,10			50,87
1.50	16.93	146.21	_	22.33	_		146.21	73.11	_	11.17			73.11

SAB 106R+/750 P4L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1.23.3 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter:

ACHSEN

Nennstreckgrenze des Stahlkernes f_{y,k} = 320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

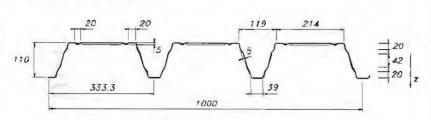
Nenn-	Feldmo-		Endaufla	gerkraft ⁶	3)	Elas	tisch aufi	nehmbar	e Schnit	tgrößen a	an Zwisc	henaufla	gern 1) 2)	4) 5) 7)
blech-	ment		Liidaajia	german		Quer-			Qua	dratisch	e Interal	ktion		
dicke						kraft		Stützm	omente		Zw	ischena	uflagerkra	äfte
		I _{a,A1} = 10 mm	I _{a,A2} = 40 mm	I _{a,A1} = 10 mm	I _{a.A2} = 40 mm		 _{a,8} =	- mm	I _{a,B} = 1	60 mm	l _{a.B} = .	- mm	1 _{aB} = 16	50 mm
t _N	M _{c,Rk,F}	R _{T,v}	v,Rk,A	R _{G,v}	100-7000		M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	Rº Rk,B	R _{w,Rk,B}
mm	kNm/m			l/m		kN/m		kNr	n/m			kN	l/m	
0,70	8,24	4,15	12,15	4,15	12,15		7		6,43	5,51	J	1	26,46	18,35
0,75	9,53	4,85	14,05	4,85	14,05		i	1	7,44	6,38	1	1	30,62	21,23
0,88	12,09	6,89	21,23	6,89	21,23		/		9,66	8,72	/		47,70	30,72
1,00	14,45	9,07	27,85	9,07	27,85	n.m.			11,72	10,88	1	F	63,46	39,49
1,13	17,00	11,74	36,42	11,74	36,42		/		14,05	13,20	1	1	81,04	48,96
1,25	19,36	14,49	44,34	14,49	44,34		/	/	16,20	15,35	1	1	97,26	57,71
1,50	23,36	21,07	53,50	21,07	53,50		1	/	19,54	18,52	/	/	117,36	69,63

Reststützmomente 8)

) _{a,i}	_B = - mm		l _{a,i}	= 160 mm		Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	
0,70			/	-	-	-	M _{R,Rk} = 0 für L≤min L
0,75				8,82	9,75	1,80	
0,88				8,68	9,61	2,40	$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
1,00				8,55	9,49	2,95	$M_{R,Rk} = \frac{L - min L}{max L - min L} \cdot max M_{R,Rk}$
1,13				7,75	8,70	3,76	
1,25				7.02	7,98	4,51	M _{R.Rk} = max M _{R,k} für L ≥ max L
1,50				7,02	7,98	5,44	

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-		Ve	rbindung	j in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,70	6,52	21,02	-	7,85	-	-	21,02	10,51	-	3,93	-	-	10,51
0,75	7,30	25,85		8,91	-	-	25,85	12,92	-	4,45	-	-	12,92
0,88	9,05	41,65	-	11,56	-	-	41,65	20,83		5,78	-	- 1	20,83
1,00	10,67	60,90	-	13,77	- 1	-	60,90	30,45	-	6,89	-	-	30,45
1,13	12,47	83,19	-	16,12		-	83,19	41,59		8,06	-	-	41,59
1,25	14,04	101,74	-	18,19	-	_	101,74	50,87	-	9,10	-	-	50,87
1,50	16,93	146,21	-	22,33	-	-	146,21	73,11	-	11,17	-	-	73,11


SAB 110R/1000

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.24.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05-08.2025

Leiter: FREISTAAT Bearbeiter:

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

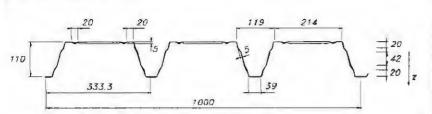
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ung ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksame	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I+ eff			Ìg	Z _g	A _{eff}	i _{eff}	Z _{eff}	Lgr	Lgr
mm	kN/m²	cm	⁴/m	cm²/m			cm²/m	СГ	n		m
0,75	0,090	148,4	165,7	10,42	4,03	3,50	3,68	4,61	4,71	4,80	6,00
0,88	0,106	179,6	199,9	12,33	4,03	3,50	4,68	4,60	4,74	7,24	9,05
1,00	0,120	208,4	228,4	14,09	4,03	3,50	5,66	4,60	4,75	9,50	11,87
1,13	0,136	236,6	259,3	16,00	4,03	3,50	6,76	4,60	4,74	10,78	13,47
1,25	0,150	262,7	287,8	17,76	4,03	3,50	7,74	4,59	4,69	11,97	14,96
1,50	0,180	317,0	347,0	21,42	4,03	3,50	9,85	4,56	4,56	14,44	18,05

Schubfeldwerte

	G	enzzuetani	d der Gebrau	chetaualick	kait 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	0,	CIZZOSION	dei Oebiad	cristaughei	MASIL					L	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	B,GK	- 1		1	2	' Rk,g	TR .	RkJ	* ,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10⁴·m²/kN	10⁴ ·1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	1=	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	0,79	0,255	93,079	3,500	2,333	9,13	7,00	9,19	0,168	2,36	1	
0,88	1,20	0,215	61,137	3,500	2,333	11,75	7,00	15,21	0,182	3,04	1	
1,00	1,68	0,189	43,785	3,500	2,333	14,35	7,00	22,71	0,195	3,71		
1,13	2,30	0,166	31,874	3,500	2,333	17,36	7,00	33,23	0,208	4,49		
1,25	2,99	0,150	24,549	3,500	2,333	20,30	7,00	45,46	0,219	5,26		
1,50	4,78	0,124	15,350	3,500	2,333	26,90	7,00	79,87	0,241	6,97		
Sonderb	efestigur	ng: Verbindi	ung mit 2 Scl	hrauben od	er verstärkte	r Unterle	gschei	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	0,77	0,255	91,708	3,500	1,167	9,13	7,00	9,19	0,256	2,95	- 7	
0,88	1,17	0,215	60,236	3,500	1,167	11,75	7,00	15,21	0,256	3,80		
1,00	1,64	0,189	43,139	3,500	1,167	14,35	7,00	22,71	0,256	4,64		
1,13	2,25	0,166	31,404	3,500	1,167	17,36	7,00	33,23	0,256	5,62		
1,25	2,92	0,150	24,187	3,500	1,167	20,30	7,00	45,46	0,256	6,57		
1,50	4,67	0,124	15,124	3,500	1,167	26,90	7,00	79,87	0,256	8,71		

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 110R/1000

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

ALS TYPENENTWURF

Anlage 1.24.2 zum Prüfbescheid

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Bearbeiter: FREISTAAT

ACHSEN

Nennstreckgrenze des Stahlkernes f., = 320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

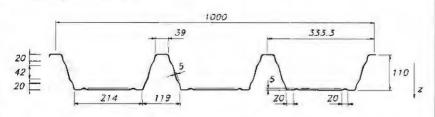
Nenn-	Feldmo-		-ndaufla	gerkraft ⁶	i)	Elast	tisch aufr	nehmbar	e Schnitt	größen a	an Zwisc	henaufla	gern 1) 2)	4) 5) 7)
blech-	ment		Lindadiid	goman		Quer-			Qua	dratisch	e Interal	ktion		
dicke						kraft		Stützm	omente		Zw	ischenau	ıflagerkr	äfte
		I _{a,A1} = 10 mm	_{a,A2} = 40 mm	I _{a,A1} = 10 mm	I _{a A2} = 40 mm		I _{a,8} = 13	20 mm	1 _{a,B} = 16	60 mm	l _{ae} = 12	20 mm	(_{a,0} = 16	30 mm
t _N	M _{c,Rk,F}	R _{T,w}	/,Rk,A	$R_{g,v}$	v,Rk,A V _{w,Rk}	M ^o _{Rk,B}	M _{c,Rk,B}	M ^o Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	
mm	kNm/m			/m		kN/m		kNr	n/m			kN	/m	
0,75	6,89	5,57	8,00	5,57	7,08		6,80	6,40	7,09	6,40	26,91	20,09	31,31	22,62
0,88	10,19	7,81	11,84	7,81	10,76		9,30	8,60	9,47	8,60	38,61	28,41	48,75	33,33
1,00	10,71	10,19	15,39	10,19	14,16		11,61	10,63	11,67	10,63	49,41	36,09	64,84	43,22
1,13	12,16	13,10	17,47	13,10	16,08	n.m.	13,18	12,07	13,25	12,07	56,09	40,98	73,60	49,07
1,25	13,50	16,08	19,40	16,08	17,85		14,63	13,40	14,71	13,40	62,27	45,49	81,73	54,47
1,50	16,29	23,21	23,41	23,21	21,54		17,65	16,17	17,75	16,17	75,14	54,89	98,62	65,72

Reststützmomente 8)

	l _a ,	_e = 120 mm		l _{a,E}	= 160 mm	1	Reststütz	momente M _{R.Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}		
mm	m	m	kNm/m	m	m	kNm/m		
0,75	5,89	6,60	1,51	5,39	6,11	1,65	$M_{R,Rk} = 0$	für L≤min L
0,88	5,35	6,07	2,13	5,18	5,91	2,20		
1,00	5,10	5,83	2,70	5,08	5,81	2,71	$M_{R,Rk} = \frac{L - \frac{L}{mov}}{L}$	min L max M _{R,Rk}
1,13	5,10	5,83	3,07	5,08	5,81	3,08	max L	- min L
1,25	5,10	5,83	3,40	5,08	5,81	3,42		
1,50	5,10	5,83	4,10	5,08	5,81	4,13	$M_{R,Rk} = \max M$	_{R,k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-	Feldmo-	Ve	rbindung	j in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlieg	genden G	iurt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ^o Rk,B	M _{c,Rk,B}	$R^{\scriptscriptstyle 0}_{_{Rk,B}}$	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	6,16	34,66	-	6,69	-	-	34,66	17,33	-	3,35	-	-	17,33
88,0	7,97	55,33	-	8,36	-		55,33	27,66	-	4,18	-	-	27,66
1,00	9,44	74,28	-	9,90	-	_	74,28	37,14	-	4,95		_	37,14
1,13	10,98	94,54	-	11,58	-	-	94,54	47,27	-	5,79	_	-	47,27
1,25	12,28	115,13	_	13,17		-	115,13	57,57	-	6,58	1.2	-	57,57
1,50	14,81	164,15	-	16,95	-	-	164,15	82.07	_	8,48	_	1 1	82,07


SAB 110R/1000

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Anlage 1.24.3 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

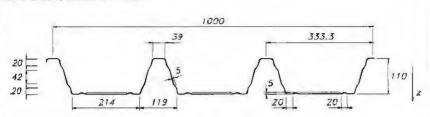
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu:	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	l-	A _g	i _g	Zg	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	4/m	cm²/m	Cr	n	cm²/m	cr	n		m
0,75	0,090	165,7	148,4	10,42	4,03	7,50	3,68	4,61	6,29		
0,88	0,106	199,9	179,6	12,33	4,03	7,50	4,68	4,60	6,26) y
1,00	0,120	228,4	208,4	14,09	4,03	7,50	5,66	4,60	6,25		
1,13	0,136	259,3	236,6	16,00	4,03	7,50	6,76	4,60	6,26		
1,25	0,150	287,8	262,7	17,76	4,03	7,50	7,74	4,59	6,31		
1,50	0,180	347,0	317,0	21,42	4,03	7,50	9,85	4,56	6,44		

Schubfeldwerte

	G	enzzuetan	d der Gebrau	ichetaualiek	keit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
mm Normalbe 0,75 0,88 1,00 1,13 1,25	G	CHZZUSIAIN	dei Gebiat	cristaugiici	INGIL						asteinleitu	ing
N.	T _{b,Ck}	K, 14) 15)	K ₂ ¹⁴⁾ 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} ²¹⁾	für a ≥
	D,CK		2		2	Rk,g	-R	RK,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10⁴·m²/kN	10⁴ ·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	1,20	0,255	51,029	3,500	2,333	9,13	7,00	9,19	0,110	5,09		
0,88	1,83	0,215	33,517	3,500	2,333	11,75	7,00	15,21	0,120	6,55		
1,00	2,55	0,189	24,004	3,500	2,333	14,35	7,00	22,71	0,128	8,00		
1,13	3,50	0,166	17,474	3,500	2,333	17,36	7,00	33,23	0,137	9,68		
1,25	4,55	0,150	13,459	3,500	2,333	20,30	7,00	45,46	0,144	11,32		
1,50	7,28	0,124	8,416	3,500	2,333	26,90	7,00	79,87	0,158	15,01		
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gschei	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	10,04	0,255	1,282	3,500	1,167	9,13	7,00	9,19	0,815	15,77	1	
0,88	15,29	0,215	0,842	3,500	1,167	11,75	7,00	15,21	0,815	20,29		
1,00	21,35	0,189	0,603	3,500	1,167	14,35	7,00	22,71	0,815	24,79		
1,13	29,33	0,166	0,439	3,500	1,167	17,36	7,00	33,23	0,815	29,99		
1,25	38,08	0,150	0,338	3,500	1,167	20,30	7,00	45,46	0,815	35,08		
1,50	60,90	0,124	0,211	3,500	1,167	26,90	7,00	79,87	0,815	46,49		

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 110R/1000

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Leipzig, den 05.08.2025 eiter: Bearbeiter:

Anlage 1.24.4 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik

Leiter: FREIST

FREISTAAT

Nennstreckgrenze des Stahlkernes f, =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

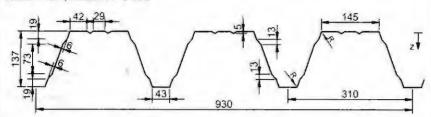
Nenn-	Feldmo-				F	Elastis	ch aufr	nehmb	are Sc	hnittgrö	ßen an	Zwische	nauflage	rn 1) 2) 4)	5) 7)	
blech-	ment	End		Quer-						Line	are Inte	raktion				
dicke		lageri	(raft ⁶⁾	kraft		5	Stützm	omente	9			Zwi	schenau	ıflagerkr	äfte	
t _N			l _{a2} = 40 mm		I _{a,B} = 1	0 mm	l _{a,18} = 6	0 mm	I _{a,B} = 16	60 mm	I _{a,B} = 1	0 mm	I _{a,B} = 6	0 mm	(_{a,B} = 16	60 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M° Rk,B	M _{c,Rk,B}	Mº _{Rk,B}	M _{c,Rk,B}	M° Rk,8	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,8}	R _{w,Rk,B}
mm	kNm/m	kN	/m	kN/m			kNr	n/m						/m		
0,75	6,16	4,15	6,29		8,36	6,69	8,36	6,69	8,36	6,69	10,38	8,30	18,12	14,50	26,41	21,13
0,88	7,97	5,80	8,67		10,45	8,36	10,45	8,36	10,45	8,36	14,51	11,61	24,90	19,92	36,01	28,81
1,00	9,44	7,59	11,22	n.m.	12,37	9,90	12,37	9,90	12,37	9,90	18,98	15,18	32,11	25,69	46,16	36,92
1,13	10,98	9,83	14,37		14,48	11,58	14,48	11,58	14,48	11,58	24,58	19,66	41,02	32,81	58,60	46,88
1,25	12,28	12,20	17,66		16,46	13,17	16,46	13,17	16,46	13,17	30,49	24,39	50,31	40,25	71,51	57,21
1,50	14,81	18,12	25,83		21,19	16,95	21,19	16,95	21,19	16,95	45,31	36,25	73,25	58,60	103,13	82,50

Reststützmomente 8)

l _{a,l}	= 10 m	ım	l a,t	_s = 60 m	m	l _{a.6}	₃ = 160 m	m	Reststützmomente M _{R,Rk}
min L	max L	max M _{R,Rx}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
									M _{R,Rk} = 0 für L≤min L
									l min l
									$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R}$
									M _{RRk} = max M _{Rk} für L≥ max L
	min L	min L max L		min L max L max M _{R,Rx} min L	min L max L max M _{R.Rx} min L max L	min L max L max M _{R,Rx} min L max L max M _{R,Rx}	min L max L max M _{R,Rx} min L max L max M _{R,Rx} min L	min L max L max M _{R,Rx} min L max L max M _{R,Rx} min L max L	min L max L max M _{R,Rx} min L max L max M _{R,Rx} min L max L max M _{R,Rx}

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-	Feldmo-	Ve	erbindung	g in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ Rk,B	M _{c,Rk,B}	$R^{\theta}_{Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	$R^0_{Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	6,69	34,66	-	6,16	-	-	34,66	17,33	-	3,08	-	-	17,33
0,88	8,36	55,33	-	7,97			55,33	27,66		3,99		-	27,66
1,00	9,90	74,28	-	9,44	-	-	74,28	37,14	-	4,72	-	-	37,14
1,13	11,58	94,54	-	10,98	-	-	94,54	47,27	-	5,49	-	-	47,27
1,25	13,17	115,13	-	12,28	_	-	115,13	57,57	-	6,14		-	57,57
1,50	16,95	164,15	-	14,81	_	_	164,15	82,07	-	7,40	_) -	82,07


SAB 135R/930

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.25.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

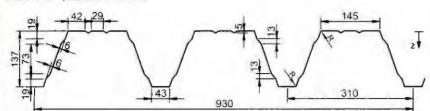
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norn	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	9	i+ eff	l- eff	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	Lgr
mm	kN/m²	cm	⁴/m	cm²/m	CF	n	cm²/m	cr	n		m
0,75	0,097	285,6	276,0	11,29	5,03	5,37	4,08	5,89	5,76	5,50	6,85
0,88	0,114	337,8	335,2	13,36	5,03	5,37	5,33	5,86	5,76	9,00	11,25
1,00	0,129	386,1	386,1	15,27	5,03	5,37	6,56	5,83	5,76	10,29	12,85
1,13	0,146	438,3	438,3	17,33	5,03	5,37	7,97	5,81	5,76	11,68	14,60
1,25	0,161	486,4	486,4	19,24	5,03	5,37	9,35	5,78	5,76	12,96	16,20
1,50	0,194	586,7	586,7	23,21	5,03	5,37	12,17	5,69	5,74	15,65	19,55

Schubfeldwerte

	G	ranzzuetani	d der Gebrau	chetaualich	okait 17)		G	irenzzus	tand der	Tragfähi	gkeit 18)	
		CHZZUStark	dei Oebiad	chataughci	INCIL					l	_asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K* 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	B,CK		2	- 1	, , 2	* Rk,g	¬R	Rk.I	3		130 mm	280 mm
mm	kN/m	10 ⁻ m/kN	10 ⁻⁴ ·m²/kN	10-4 · 1/kN	10-⁴·m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	1,65	0,274	55,589	3,763	2,170	13,29	7,00	18,70	0,512	2,53	13,53	18,00
0,88	2,51	0,232	36,512	3,763	2,170	17,10	7,00	30,97	0,557	3,26	16,00	21,29
1,00	3,51	0,203	26,149	3,763	2,170	20,89	7,00	46,23	0,595	3,98	18,29	24,34
1,13	4,82	0,179	19,036	3,763	2,170	25,26	7,00	67,68	0,634	4,82	20,76	27,63
1,25	6,26	0,161	14,661	3,763	2,170	29,54	7,00	92,58	0,668	5,64	23,05	30,67
1,50	10,00	0,133	9,167	3,763	2,170	39,15	7,00	116,8	0,734	7,47	27,81	37,01
Sonderb	efestigur	ng: Verbind	ung mit 2 Scl	hrauben od	er verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,58	0,274	40,601	3,763	1,085	13,29	7,00	18,70	0,791	5,64	13,53	18,00
0,88	2,40	0,232	26,668	3,763	1,085	17,10	7,00	30,97	0,791	7,26	16,00	21,29
1,00	3,36	0,203	19,099	3,763	1,085	20,89	7,00	46,23	0,791	8,88	18,29	24,34
1,13	4,61	0,179	13,903	3,763	1,085	25,26	7,00	67,68	0,791	10,74	20,76	27,63
1,25	5,98	0,161	10,708	3,763	1,085	29,54	7,00	92,58	0,791	12,56	23,05	30,67
1,50	9,57	0,133	6,696	3,763	1,085	39,15	7,00	116,8	0,791	16,65	27,81	37,01

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 135R/930

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.25.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft, Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter:

Nennstreckgrenze des Stahtkernes f_{v.k} =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

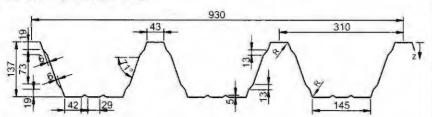
Nenn-	Feldmo-		Endaufla	gerkraft ⁶	5)	Elas	tisch aufi	nehmbar	e Schnit	tgrößen a	an Zwisc	henaufla	gern 1) 2)	4) 5) 7)
blech-	ment		Linddalla	goman		Quer-			Qua	dratisch	e Intera	ktion		
dicke						kraft		Stützm	omente		Zw	rischenau	ıflagerkr	äfte
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		I _{aB} = 6	0 mm	I _{a.8} = 1	60 mm	l _{a,8} = 6	60 mm	I _{a,B} = 16	30 mm				
t _N	M _{c,Rk,F}	R _{T,v}	v,Rk,A	R _{G,v}	v,Rk,A	V _{w,Rk}	M ⁰ Rk,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m			l/m		kN/m		kNr	n/m			kN	l/m	
0,75	9,44	8,56	10,43	8,56	10,43		10,10	7,46	12,12	9,13	19,42	16,83	24,51	21,07
0,88	12,04	11,75	14,93	11,75	14,93		13,98	10,40	16,24	12,52	27,44	23,69	34,98	29,76
1,00	14,44	14,96	19,09	14,96	19,09		17,56	13,12	20,04	15.66	34,82	30,02	44,63	37,79
1,13	17,02	19,31	24,06	19,31	24,06	n.m.	19,94	14,90	22,76	17,78	39,52	34,08	50,67	42,91
1,25	19,60	23,60	23,60	23,60	23,60		22,13	16,54	25,26	19,73	43,89	37,83	56,23	47,63
1,50	24,34	33,74	33,74	33,74	33,74		26,71	19,96	30,48	23,81	52,92	45,65	67,30	57,48

Reststützmomente 8)

	l _{a,i}	_B = 60 mm		l _{a,t}	= 160 mm		Reststüt	zmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}		
mm	m	m	kNm/m	m	m	kNm/m		
0,75	5,22	5,94	2,35	4,25	5,01	2,88	$M_{R,Rk} = 0$	für L≤min L
0,88	5,16	5,88	3,03	4,70	5,44	3,33		
1,00	5,12	5,85	3,66	5,01	5,74	3,74	M = L-	min L max M _{R,Rk}
1,13	5,12	5,85	4,16	5,01	5,74	4,25	$M_{R,Rk} = \frac{L}{\text{max L}}$. – min L
1,25	5,12	5,85	4,61	5,01	5,74	4,71		
1,50	5,12	5,85	5,57	5,01	5,74	5,69	$M_{R,Rk} = max N$	1 _{R,k} für L≥max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

	ve	rbinaung	j in jeden	n anliege	enden Gu	ırt	Verl	bindung	in jedem	2. anlie	genden G	urt
ment	Endauf- lagerkraft		M/\	/- Intera	ktion		Endauf- lagerkraft		M/V	- Intera	ktion	
M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
8,31	28,49	-	9,32	-	-	28,49	14,24	-	4,66	-	-	14,24
10,91	45,43	-	11,86	_		45,43	22,72		5,93	-	-	22,72
13,43	65,91	-	14,30	-	-	65,91	32,95	-	7,15	-	-	32,95
16,20	93,98	-	17,02	-	-	93,98	46,99	-	8,51	-	-	46,99
18,55	121,14	-	19,60	-	-	121,14	60,57	-	9,80	-	-	60,57
22,54	173,22		24,34	-	-	173,22	86,61	-	12,17	-	- 1	86,61
-	M _{c,Rk,F} kNm/m 8,31 10,91 13,43 16,20 18,55	M _{c,Rk,F} R _{w,Rk,A} kNm/m kN/m 8,31 28,49 10,91 45,43 13,43 65,91 16,20 93,98 18,55 121,14	Endauf- lagerkraft	Modern Ingerkraft M/N Modern Ingerkraft Modern Ingerkraft Modern Ingerkraft Modern Ingerkraft Modern Ingerkraft Modern Ingerkraft kNm/m kNm/m kNm/m 8,31 28,49 - 9,32 10,91 45,43 - 11,86 13,43 65,91 - 14,30 16,20 93,98 - 17,02 18,55 121,14 - 19,60	Endauflagerkraft M/V-Intera M _{c,Rk,F} R _{w,Rk,A} M° _{Rk,B} M _{c,Rk,B} R° _{Rk,B} kNm/m kN/m kNm/m kNm/m kN/m 8,31 28,49 - 9,32 - 10,91 45,43 - 11,86 - 13,43 65,91 - 14,30 - 16,20 93,98 - 17,02 - 18,55 121,14 - 19,60 -	Modern Indexervation Modern Indexervation Modern Indexervation Rought N/V-Interaktion M/V-Interaktion Rought Rought N/M kN/m kN/m kN/m N/M kN/m kN/m kN/m 11,960 - - - 121,14 - 19,60 - - -	Endauflagerkraft M/V-Interaktion M _{c,Rk,F} R _{w,Rk,A} M° _{Rk,B} M _{c,Rk,B} R° _{Rk,B} R _{w,Rk,B} V _{w,Rk} kNm/m kN/m kNm/m kN/m kN/m kN/m kN/m 8,31 28,49 - 9,32 - - 28,49 10,91 45,43 - 11,86 - - 45,43 13,43 65,91 - 14,30 - - 65,91 16,20 93,98 - 17,02 - - 93,98 18,55 121,14 - 19,60 - - 121,14	Endauf- lagerkraft M/V- Interaktion Endauf- lagerkraft M _{c,Rk,F} R _{w,Rk,A} M° _{Rk,B} M _{c,Rk,B} R° _{Rk,B} R _{w,Rk,B} V _{w,Rk} R _{w,Rk,A} kNm/m kN/m kNm/m kN/m kN/m kN/m kN/m 8,31 28,49 - 9,32 - - 28,49 14,24 10,91 45,43 - 11,86 - - 45,43 22,72 13,43 65,91 - 14,30 - - 65,91 32,95 16,20 93,98 - 17,02 - - 93,98 46,99 18,55 121,14 - 19,60 - - 121,14 60,57	Endauflagerkraft M/V-Interaktion Endauflagerkraft M _{c,Rk,F} R _{w,Rk,A} M° _{Rk,B} M _{c,Rk,B} R° _{Rk,B} V _{w,Rk} R _{w,Rk,A} M° _{Rk,B} kNm/m kN/m kNm/m kN/m kN/m kN/m kN/m kNm/m 8,31 28,49 - 9,32 - - 28,49 14,24 - 10,91 45,43 - 11,86 - - 45,43 22,72 - 13,43 65,91 - 14,30 - - 65,91 32,95 - 16,20 93,98 - 17,02 - - 93,98 46,99 - 18,55 121,14 - 19,60 - - 121,14 60,57 -	Endauflagerkraft M/V-Interaktion Endauflagerkraft M/V M _{c,Rk,F} R _{w,Rk,A} M° _{Rk,B} M _{c,Rk,B} R° _{Rk,B} R _{w,Rk,B} V _{w,Rk} R _{w,Rk,A} M° _{Rk,B} M _{c,Rk,B} kNm/m kN/m kN/m kN/m kN/m kN/m kN/m kNm/m kNm/m	Endauf- lagerkraft	Endauf- Iagerkraft


SAB 135R/930

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f_{v,k} =

320 N/mm²

erinstreckgrenze des Stankernes I_{y,k} – 320 N/m

Anlage 1.25.3 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

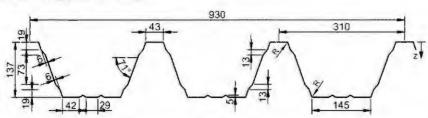
Leipzig, den 05.08.2025
Leiter: Bearbeiter:
FREISTAAT
SACHSEN

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	l' _{eff}	A _g	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	Lgr
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,097	276,0	285,6	11,29	5,03	8,33	4,08	5,89	7,94	5,95	7,40
0,88	0,114	335,2	337,8	13,36	5,03	8,33	5,33	5,86	7,94	7,80	9,75
1,00	0,129	386,1	386,1	15,27	5,03	8,33	6,56	5,83	7,94	9,60	12,00
1,13	0,146	438,3	438,3	17,33	5,03	8,33	7,97	5,81	7,94	10,25	12,80
1,25	0,161	486,4	486,4	19,24	5,03	8,33	9,35	5,78	7,94	10,80	13,50
1,50	0,194	586,7	586,7	23,21	5,03	8,33	12,17	5,69	7.96	11,85	14,80

Schubfeldwerte

	G	ranzzuetano	der Gebrau	chetaualich	okait 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G,	CHZZUStant	dei Gebiat	ici istaugiici	INGIL					L	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, ¹⁵⁾	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	D,CK	1.4	2		2	* Rk,g	¬R	- RK,I	, ,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ m ² /kN	10⁴ ·1/kN	10-4 ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbindi	ung in jedem	Untergurt								
0,75	1,48	0,274	77,789	3,763	2,170	13,29	7,00	18,70	0,253	3,67	20,98	20,98
0,88	2,25	0,232	51,094	3,763	2,170	17,10	7,00	30,97	0,275	4,72	24,82	24,82
1,00	3,14	0,203	36,592	3,763	2,170	20,89	7,00	46,23	0,294	5,77	28,37	28,37
1,13	4,31	0,179	26,638	3,763	2,170	25,26	7,00	67,68	0,313	6,98	32,21	32,21
1,25	5,60	0,161	20,516	3,763	2,170	29,54	7,00	92,58	0,330	8,17	35,76	35,76
1,50	8,95	0,133	12,829	3,763	2,170	39,15	7,00	116,8	0,363	10,83	43,14	43,14
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,75	11,34	0,274	1,676	3,763	1,085	13,29	7,00	18,70	1,036	17,06	20,98	20,98
0,88	17,27	0,232	1,101	3,763	1,085	17,10	7,00	30,97	1,036	21,96	24,82	24,82
1,00	24,11	0,203	0,788	3,763	1,085	20,89	7,00	46,23	1,036	26,83	28,37	28,37
1,13	33,12	0,179	0,574	3,763	1,085	25,26	7,00	67,68	1,036	32,46	32,21	32,21
1,25	43,00	0,161	0,442	3,763	1,085	29,54	7,00	92,58	1,036	37,97	35,76	35,76
1,50	68,76	0,133	0,276	3,763	1,085	39,15	7,00	116,8	1,036	50,32	43,14	43,14

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 135R/930

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Leiter:

ALS TYPENENTWURF in baustatischer Hinsicht geprüft.

Anlage 1.25.4 zum Prüfbescheid

Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Bearbeiter:

FREISTAAT ACHSEN

Nennstreckgrenze des Stahlkernes f, =

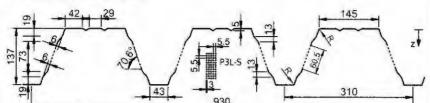
320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				1	Elastis	ch aufr	nehmb	are Sc	hnittgrö	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	End	auf-	Quer-						Line	eare Inte	eraktion				
dicke		iageri	(raft ⁶	kraft			Stültzm	oment	е			Zw	ischenau	ıflagerkr	äfte	
t _N M _{c,R}			_{a2} = 40 mm) _{a,B} = 1	0 mm	l _{a B} = 6	0 mm	_{a,B} = 16	60 mm	I _{a,B} = 1	0 mm	I _{aB} = 6	0 mm	l _{aB} = 16	30 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	Mº RK,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ^a _{Rk,B}	M _{c,Rk,B}	Ro Rk,B	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	Rº Rk,B	R _{w,Rk,B}
mm	kNm/m		/m	kN/m			kNr	n/m					kN	l/m		
0,75	8,31	4,50	6,82		11,65	9,32	11,65	9,32	11,65	9,32	11,25	9,00	19,66	15,72	28,64	22,91
0,88	10,91	6,37	9,51		14,83	11,86	14,83	11,86	14,83	11,86	15,92	12,74	27,32	21,85	39,51	31,61
1,00	13,43	8,43	12,46	1000	17,88	14,30	17,88	14,30	17,88	14,30	21,08	16,86	35,66	28,53	51,26	41,00
1,13	16,20	11,07	16,18	n.m.	21,28	17,02	21,28	17,02	21,28	17,02	27,69	22,15	46,20	36,96	66,01	52,81
1,25	18,55	13,93	20,18		24,50	19,60	24,50	19,60	24,50	19,60	34,83	27,86	57,46	45,97	81,68	65,34
1,50	22,54	21,36	30,45		30,42	24,34	30,42	24,34	30,42	24,34	53,40	42,72	86,33	69,06	121,55	97,24
								1								

Reststützmomente 8)

	lal	_B = 10 m	m	l _{a,E}	= 60 m	m	l _{a,E}	= 160 m	m	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_R$
										M _{R.Rk} = max M _{P.k} für L≥ max L


Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

		Ve	erbindung	j in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera		
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	${R^{\scriptscriptstyle 0}}_{_{Rk,B}}$	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	9,32	28,49	-	8,31	-	-	28,49	14,24	-	4,15	-	1-	14,24
0,88	11,86	45,43	-	10,91	-	-	45,43	22,72	-	5,45	12	-	22,72
1,00	14,30	65,91	4	13,43	-	-	65,91	32,95	-	6,72	-	-	32,95
1,13	17,02	93,98	-	16,20	-	-	93,98	46,99	-	8,10	-	4	46,99
1,25	19,60	121,14	-	18,55		-	121,14	60,57	-	9,27	-	-	60,57
1,50	24,34	173,22	_	22,54	-	-	173.22	86,61	-	11,27	-	- 1	86,61

SAB 135R/930 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Maße in mm, Radien R= 5 mm **Positivlage**

Anlage 1.26.1 zum Prüfbescheid
ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025
Leiter: Bearbeiter: SACHSEN SACHSEN

Nennstreckgrenze des Stahlkernes f, =

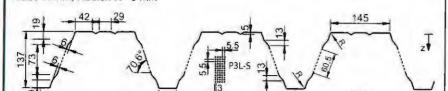
320 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norn	nalkraftbe	anspruchu	ng		Grenzstü	tzweiten 13)
blech- dicke				nicht reduz	zierter Qu	erschnitt	wirksame	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	[+ eff	l' _{eff}	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	cn	n	cm²/m	cn	n		m
0,75	0,092	259,7	254,2	9,63	5,26	5,12	3,72	6,07	5,65	5,01	6,25
0,88	0,107	313,9	312,8	11,39	5,26	5,12	4,82	6,06	5,65	8,14	10,15
1,00	0,122	360,6	360,6	13,02	5,26	5,12	5,91	6,04	5,64	10,05	12,55
1,13	0,138	409,4	409,4	14,78	5,26	5,12	7,17	6,02	5,64	11,40	14,25
1,25	0,153	454,3	454,3	16,41	5,26	5,12	8,39	6,00	5,64	12,56	15,70
1,50	0,183	548,0	548,0	19,79	5,26	5,12	10,82	5,93	5,60	15,28	19,10

Schubfeldwerte

	Gr	enzzuetane	d der Gebrau	chetaualich	akoit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	CHZZUSIANI	dei Gebiau	icristaugiici	ikeit -						asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*. 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} ²¹⁾	für a ≥
	b,Ck	11	2		1 2	Rk,g	TR	* Rk,I	.,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10⁴-1/kN	10⁴·m²/kN	kN/m	m	kN/m		kN/m	kN	kN
Normalb	efestigur	ng: Verbindu	ung in jedem	Untergurt								
0,75	1,30	0,274	70,614	3,763	2,170	12,63	7,00	13,88	0,512	2,00	13,53	18,00
0,88	1,98	0,232	46,381	3,763	2,170	16,24	7,00	22,18	0,557	2,57	16,00	21,29
1,00	2,76	0,203	33,217	3,763	2,170	19,84	7,00	32,23	0,595	3,14	18,29	24,34
1,13	3,79	0,179	24,181	3,763	2,170	24,00	7,00	46,04	0,634	3,80	20,76	27,63
1,25	4,92	0,161	18,624	3,763	2,170	28,07	7,00	61,79	0,668	4,44	23,05	30,67
1,50	7,88	0,133	11,645	3,763	2,170	37,19	7,00	105,0	0,734	5,88	27,81	37,01
Sonderb	efestigur	ng: Verbindu	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		
0.75	1,24	0,274	51,576	3,763	1,085	12,63	7,00	13,88	0,791	4,44	13,53	18,00
0,88	1,89	0,232	33,876	3,763	1,085	16,24	7,00	22,18	0,791	5,72	16,00	21,29
1,00	2,64	0,203	24,261	3,763	1,085	19,84	7,00	32,23	0,791	6,99	18,29	24,34
1,13	3,63	0,179	17,661	3,763	1,085	24,00	7,00	46,04	0,791	8,45	20,76	27,63
1,25	4,71	0,161	13,603	3,763	1,085	28,07	7,00	61,79	0,791	9,89	23,05	30,67
1,50	7,53	0,133	8,506	3,763	1,085	37,19	7,00	105,0	0,791	13,10	27,81	37,01


a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".

SAB 135R/930 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Maße in mm, Radien R= 5 mm

Positivlage

ALS TYPENENTWURF in baustatischer Hinsicht geprüft.

Anlage 1.26.2 zum Prüfbescheid

Prüfbescheid Nr. T25-122

Landesdirektion Sachsen Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter: FREISTAAT SACHSEN

Nennstreckgrenze des Stahlkernes f_{vk} =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

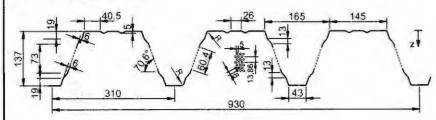
Nenn-	Feldmo-		Endaufla	gerkraft ⁶	5)	Elas	tisch auf	nehmbar	e Schnit	tgrößen a	an Zwisc	henaufla	gern ^{1) 2)}	4) 5) 7)
blech- dicke	ment			goman		Quer-			Qua	dratisch	e Intera	ktion		
UICKE						kraft		Stützm	omente		Zw	vischenau	ıflagerkr	äfte
		I _{a,A1} = 40 mm	l _{a,A2} = 90 mm	I _{a,A1} = 40 mm	I _{a,A2} = 90 mm		I _{a,8} = 6	0 mm	l _{a,8} = 10	60 mm	1 _{aB} = 6	60 mm	I _{a.8} = 16	60 mm
t _N	M _{c,Rk,F}	R _{T,v}	v,Rk,A	R _{G,v}	,Rk,A V _{w,Rk}	Mº Rk,B	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	
mm	kNm/m			/m		kN/m		kNr	n/m			kN	/m	
0,75	8,96	6,99	6,99	6,99	6,99	1	7,64	6,18	9,23	7,48	18,74	15,61	22,94	19,04
0,88	11,37	10,44	10,44	10,44	10,44		10,83	9,11	12,27	10,30	28,96	23,72	34,57	28,00
1,00	13,70	13,62	13,62	13,62	13,62		13,77	11,83	15,08	12,91	38,41	31,20	45,36	36,27
1,13	16,28	15,46	15,46	15,46	15,46	n.m.	15,63	13,43	17,13	14,66	43,61	35,43	51,53	41,18
1,25	18,71	17,16	17,16	17,16	17,16		17,35	14,91	19,01	16,27	48,40	39,33	57,16	45,72
1,50	23,17	22,13	22,13	22,13	22,13		20,94	17,99	22,94	19,63	58,39	47.45	68,97	55,16

Reststützmomente 8)

	l _{a,}	= 60 mm		l _{a,1}	= 160 mm	1	Reststüt	zmomente M _{R.Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}		
mm	m	m	kNm/m	m	m	kNm/m		
0,75	4,97	5,70	2,11	4,91	5,24	2,18	$M_{R,Rk} = 0$	für L≤min L
0,88	4,86	5,60	2,90	4,50	5,25	3,13		
1,00	4,80	5,54	3,62	4,35	5,10	4,00	M _ L -	min L
1,13	4,80	5,54	4,11	4,35	5,10	4,54	M _{R.Rk} = max L	min L max M _{R,Rk}
1,25	4,80	5,54	4,56	4,35	5,10	5,04		
1,50	4,80	5,54	5,51	4,35	5,10	6,08	$M_{R,Rk} = \max M$	_{R.k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	Feldmo-	Ve	rbindung	j in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	$R_{w,Rk,A}$	M ^o _{Rk,B}	M _{c,Rk,B}	$R^{o}_{Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	7,86	13,88	-	8,96	-	-	13,88	6,94	-	4,48	-	-	6,94
0,88	10,20	22,18	- /	11,37	-	-	22,18	11,09	-	5,69	_	-	11,09
1,00	12,52	32,23		13,70	-	- 1	32,23	16,11	-	6,85	-	-	16,11
1,13	14,81	46,04	-	16,28	-	-	46,04	23,02	2	8,14	-	-	23,02
1,25	16,79	61,79	211	18,71	-		61,79	30,89	-	9,35	-	-	30,89
1,50	20,43	105,05	-	23,17	-	_	105,05	52,52	_	11,59	_	_	52,52


SAB 135R/930 P5L

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.27.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes $f_{y,k}$ =

320 N/mm²

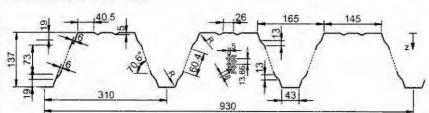
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke			Ü	nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I+ eff	J- eff	A _g	ig	Zg	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	cr	'n		m
0,75	0,088	263,2	255,4	9,01	5,46	5,01	3,72	6,12	5,63	5,00	6,25
0,88	0,104	317,6	313,4	10,65	5,46	5,01	4,80	6,11	5,62	7,85	9,80
1,00	0,118	363,1	363,1	12,18	5,46	5,01	5,86	6,11	5,62	9,35	11,65
1,13	0,133	412,1	412,1	13,82	5,46	5,01	7,10	6,10	5,61	9,95	12,40
1,25	0,147	457,4	457,4	15,34	5,46	5,01	8,25	6,09	5,61	10,50	13,10
1,50	0,176	551,7	551,7	18.51	5,46	5,01	10,53	6,03	5,58	11,50	14,35

Schubfeldwerte

	0		d der Gebrau	ahata raliah	strait 17)		G	Frenzzus	tand der	Tragfähi	gkeit 18)	
	G	renzzustand	der Gebrau	ichstaughci	Kell "					L	asteinleitu	ing
t _N	T	K, 14) 15)	K ₂ ^{14) 15)}	K*, 15)	K*, 15)	T 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	T _{b,Ck}	I N ₁	1,2	1 1	2	T _{Rk,9} 16)	□ R	' Rk,I	,,3		130 mm	280 mn
mm	kN/m	10⁴·m/kN	10⁴ ·m²/kN	10-4-1/kN	10-4 ·m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbindi	ung in jedem	Untergurt								
0,75	1,30	0,274	70,294	3,763	2,170	12,69	7,00	11,57	0,512	2,00	12,17	16,20
0,88	1,99	0,232	46,171	3,763	2,170	16,33	7,00	18,48	0,557	2,58	14,40	19,16
1,00	2,77	0,203	33,067	3,763	2,170	19,94	7,00	26,86	0,595	3,15	16,46	21,90
1,13	3,81	0,179	24,071	3,763	2,170	24,13	7,00	39,70	0,634	3,81	18,69	24,87
1,25	4,95	0,161	18,540	3,763	2,170	28,21	7,00	51,55	0,668	4,46	20,75	27,61
1,50	7,91	0,133	11,593	3,763	2,170	37,38	7,00	87,74	0,734	5,91	25,03	33,31
Sonderb	efestigu	ng: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	egschei	ibe in jed	dem Unte	ergurt ²⁰⁾		
0,75	1,25	0,274	51,343	3,763	1,085	12,69	7,00	11,57	0,791	4,46	12,17	16,20
0,88	1,90	0,232	33,723	3,763	1,085	16,33	7,00	18,48	0,791	5,74	14,40	19,16
1,00	2,65	0,203	24,152	3,763	1,085	19,94	7,00	26,86	0,791	7,02	16,46	21,90
1,13	3,64	0,179	17,582	3,763	1,085	24,13	7,00	39,70	0,791	8,49	18,69	24,87
1,25	4,73	0,161	13,541	3,763	1,085	28,21	7,00	51,55	0,791	9,93	20,75	27,61
1,50	7,57	0,133	8,467	3,763	1,085	37,38	7,00	87,74	0,791	13,16	25,03	33,31

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)". (Klasse 2 nach DIN EN 508-1:2014)


SAB 135R/930 P5L

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.27.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter:

FREISTAAT

Nennstreckgrenze des Stahlkernes f_{y,k} = 320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

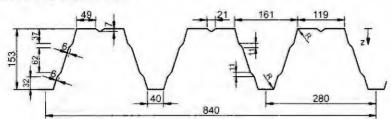
Nenn-	Feldmo-				Ę	Elastis	ch aufi	nehmb	are Sc	hnittgr	ößen an	Zwische	nauflage	ern 1) 2) 4) :	5) 7)	
blech-	ment		lauf- kraft ⁶⁾	Quer-						Line	are Inte	eraktion				
dicke		lagen	Krait '	kraft		5	Stützm	oment	е			Zw	ischenau	uflagerkrå	äfte	
		= 10 mm	I _{a2} = 40 mm		I _{a,B} = 1	0 mm	1 _a = 6	60 mm	I _{a B} = 10	60 mm	I _{a,8} = 1	0 mm	l _{a B} = 6	0 mm	l _{a,B} = 10	60 mm
t _N	M _{c,Rk,F}	R _w	,Rk,A	V _{w,Rk}	M ⁰ _{Rk,8}	M _{c,Rk,B}	M° Rk,B	M _{c,Rk,B}	M° Rk,8	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R° RK,B	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m		,		n/m				-	kN	l/m		-
0,75	9,15	3,48	5,27		9,77	7,82	9,77	7.82	9,77	7,82	8,01	6,40	13,98	11,18	20,37	16,30
0,88	11,68	5,27	7,88		12,66	10,13	12,66	10,13	12,66	10,13	11,36	9,08	19,49	15,59	28,18	22,55
1,00	14,09	6,96	10,27		15,49	12,39	15,49	12,39	15,49	12,39	14,92	11,94	25,25	20,20	36,29	29,03
1,13	16,79	8,29	12,10	n.m.	18,29	14,63	18,29	14,63	18,29	14,63	19,54	15,63	32,54	26,03	46,45	37,16
1,25	19,29	9,52	13,79		20,87	16,70	20,87	16,70	20,87	16,70	23,80	19,04	39,27	31,42	55,82	44,66
1,50	23,87	13,83	19,72		25,40	20,32	25,40	20,32	25,40	20,32	34,58	27,67	55,90	44,72	78,71	62,97

Reststützmomente 8)

	l _{a,t}	= 10 m	ım	l _{a,t}	= 60 m	m	l _{a, 6}	= 160 m	m	R	eststützmomente M _{R,Rk}
I _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}		
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m		
0,75			/	5,22	5,94	1,37	4,25	5,01	1,68	M _{R,Rk} =	0 für L≤min L
0,88				5,16	5,88	1,77	4,70	5,44	1,95		
1,00				5,12	5,85	2,14	5,01	5,74	2,19	M -	L - min L
1,13				5,12	5,85	2,43	5,01	5,74	2,48	M _{R Rk} =	max L - min L · max M _{RR}
1,25				5,12	5,85	2,69	5,01	5,74	2,75		
1,50				5,12	5,85	3,25	5,01	5,74	3,33	M _{R.Rk} =	max M _{Rk} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

	Feldmo-	Ve	erbindung	j in jeden	n anliege	enden Gu	rt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MA	/- Intera	ktion	
t _N	2.33	$R_{w,Rk,A}$	M ⁰ _{Rk,B}	M _{c,Rk,B}	$R^0_{Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	7,82	11,57	-	9,15	-	-	11,57	5,78	-	4,57	-	-	5,78
0,88	10,13	18,48	-	11,68	-	-	18,48	9,24	-	5,84	-	-	9,24
1,00	12,39	26,86	-	14,09		-	26,86	13,43		7,04		-	13,43
1,13	14,63	39,70	-	16,79	-	4	39,70	19,85	-	8,40	-	-	19,85
1,25	16,70	51,55	-	19,29	-	-	51,55	25,77	-	9,64	1.0	-	25,77
1,50	20,32	87,74		23,87		_	87,74	43,87) <u>-</u>	11,94	-	_	43,87


SAB 153R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 1.28.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Bearbeiter:

Leiter:

Nennstreckgrenze des Stahlkernes f, =

320 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ng		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksame	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	i + eff	I-	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	4/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,107	375,0	364,8	12,53	5,45	6,39	5,20	6,24	6,84	8,00	10,00
0,88	0,126	434,0	439,5	14,82	5,45	6,39	7,01	6,19	6,80	10,58	13,20
1,00	0,143	489,0	502,1	16,94	5,44	6,39	8,83	6,15	6,77	12,09	15,10
1,13	0,161	570,0	570,0	19,23	5,44	6,39	10,86	6,10	6,70	13,73	17,15
1,25	0,179	632,5	632,5	21,34	5,44	6,39	12,74	6,05	6,66	15,24	19,05
1,50	0,214	762,8	762,8	25,75	5,44	6,39	16,89	5,93	6,53	18,39	22,95

Schubfeldwerte

	C.	on zzu otono	d der Gebrau	obotovaliok	atroit 17)		G	Grenzzus	tand der	Tragfäh	gkeit 18)	
	GI	enzzustant	i der Gebrau	cristaugiici	ikeit "					ı	asteinleitu	ıng
t _N	T _{b,Ck}	K, 14) 15)	K ₂ ^{14) 15)}	K*, 15)	K* 15)	T 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	14,	2	15 1	14 2	T _{Rk,g} 16)	-R	* Rk,I	, ,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m²/kN	10⁴ ·1/kN	10⁴·m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	2,05	0,304	53,674	4,167	1,960	12,08	8,00	15,54	0,675	2,62	13,53	18,00
0,88	3,13	0,257	35,255	4,167	1,960	15,54	8,00	25,73	0,734	3,37	16,00	21,29
1,00	4,36	0,225	25,249	4,167	1,960	18,98	8,00	38,41	0,785	4,12	18,29	24,34
1,13	6,00	0,198	18,380	4,167	1,960	22,96	8,00	56,23	0,836	4,99	20,76	27,63
1,25	7,78	0,178	14,156	4,167	1,960	26,85	8,00	76,92	0,881	5,83	23,05	30,67
1,50	12,45	0,148	8,852	4,167	1,960	35,57	8,00	116,8	0,968	7,73	27,81	37,01
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	gschei	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,98	0,304	32,778	4,167	0,980	12,08	8,00	15,54	1,038	6,48	13,53	18,00
0,88	3,02	0,257	21,529	4,167	0.980	15,54	8,00	25,73	1,038	8,35	16,00	21,29
1,00	4,22	0,225	15,419	4,167	0,980	18,98	8,00	38,41	1,038	10,20	18,29	24,34
1,13	5,79	0,198	11,224	4,167	0,980	22,96	8,00	56,23	1,038	12,34	20,76	27,63
1,25	7,52	0,178	8,645	4,167	0,980	26,85	8,00	76,92	1,038	14,43	23,05	30,67
1,50	12,03	0,148	5,406	4,167	0,980	35,57	8,00	116,8	1,038	19,12	27,81	37,01

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".

SAB 153R/840

Anlage 1.28.2 zum Prüfbescheid ALS TYPENENTWURF

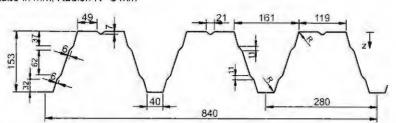
in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

FREISTAAT

Leiter:


Bearbeiter:

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

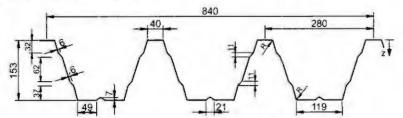
	Feldmo-		Endaufla	gerkraft ⁽	3)	Elast	tisch aufi	nehmbar	e Schnit	tgrößen a	an Zwisc	henaufla	gern 1) 2)	4) 5) 7)
blech-	ment			goman		Quer-			Qua	dratisch	e Intera	ktion		
dicke						kraft		Stützm	omente		Zw	ischenau	ıflagerkr	äfte
t _N		I _{a,A1} = 40 mm	I _{a,A2} = 90 mm	J _{a,A1} = 40 mm	I _{a,A2} = 90 mm		l _{a,8} = 6	0 mm	I _{a,B} = 10	60 mm	I _{a B} = 6	60 mm	l _{a.B} = 10	60 mm
t _N	M _{c,Rk,F}	R _{T,v}	v,Rk,A	R _{G,v}	v,Rk,A	V _{w,Rk}	M ⁰ Rk,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m			/m		kN/m			n/m				/m	
0,75	14,54	9,67	11,24	8,69	11,10		12,47	8,55	12,75	10,64	16,91	15,27	29,03	24,50
0,88	18,16	13,69	16,23	12,51	15,76		17,23	11,89	18,06	15,04	23,70	21,37	40,84	34,50
1,00	21,51	17,40	20,84	16,04	20,07	26.	21,64	14,97	22,96	19,10	29,96	27,00	51,70	43,72
1,13	24,42	19,76	23,66	18,21	22,79	n.m.	24,57	16,99	26,07	21,68	34,00	30,66	58,72	49,64
1,25	27,11	21,93	26,27	20,22	25,30		27,27	18,86	28,98	24,07	37,76	34,04	65,25	55,10
1,50	32,71	26,46	31,70	24,39	30,53		32,90	22,76	34,92	29,04	45,54	41,07	78,65	66,49

Reststützmomente 8)

	l _{a,}	_B = 60 mm		 a,i	= 160 mm		Reststütz	zmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}		
mm	m	m	kNm/m	m	m	kNm/m		
0,75	8,92	9,59	2,05	6,61	7,31	2,78	$M_{R,Rk} = 0$	für L≤min L
0,88	8,09	8,77	2,83	5,78	6,49	3,98		
1,00	7,64	8,33	3,55	5,36	6,08	5,08	M _ L -	min L . may M
1,13	7,64	8,33	4,03	5,36	6,08	5,77	$M_{R,Rk} = \frac{L}{\text{max L}}$	min L max M _{R,Rk}
1,25	7,64	8,33	4,47	5,36	6,08	6,40		
1,50	7,64	8,33	5,40	5,36	6,08	7,73	$M_{R,Rk} = max M$	_{Rk} fürL≥maxL

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

	Feldmo-	Ve	erbindung	g in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	iurt
dicke t _N M _{c,1}	ment	Endauf- lagerkraft		M/\	/- Intera	ktion		Endauf- lagerkraft		MA	/- Intera	ktion	
	M _{c,Rk,F}	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	10,93	28,77	-	12,91	-	-	28,77	14,39	-	6,45	-	-	14,39
0,88	13,93	46,34	-	16,05	-		46,34	23,17	-	8,02		-	23,17
1,00	17,05	67,49	-	19,10		-	67,49	33,74	-	9,55	4	-	33,74
1,13	20,29	96,25	-	22,45	-		96,25	48,13	-	11,22	-	-	48,13
1,25	22,72	128,98		25,58	1.2	2	128,98	64,49	-	12,79	-	-	64,49
1,50	27,40	194,71		32,23	-	-	194,71	97,35	-	16,11	-	-	97,35
-													


SAB 153R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

Leiter:

Anlage 1.28.3 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

FREISTAAT

Bearbeiter:

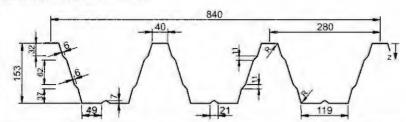
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten ¹³⁾
blech- dicke a) t _N mm				nicht reduz	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
	g	I ⁺ eff	l- eff	Ag	ì	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	cm ⁴ /m cm ² /m cm cm ² /l		cm²/m	СГ	n		m		
0,75	0,107	364,8	375,0	12,53	5,45	8,91	5,20	6,24	8,46	7,45	9,30
0,88	0,126	439,5	434,0	14,82	5,45	8,91	7,01	6,19	8,50	9,45	11,80
1,00	0,143	502,1	489,0	16,94	5,44	8,91	8,83	6,15	8,53	10,70	13,35
1,13	0,161	570,0	570,0	19,23	5,44	8,91	10,86	6,10	8,60	11,40	14,25
1,25	0,179	632,5	632,5	21,34	5,44	8,91	12,74	6,05	8,64	12,00	15,00
1,50	0,214	762,8	762,8	25,75	5,44	8,91	16,89	5,93	8,77	13,20	16,50

Schubfeldwerte

	C	ronzzuoton	d der Gebrau	chetavalie	akrait 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
1	G	enzzustant	dei Gebiau	cristaugiici	IKGIL '					I	asteinleitu	ıng
t,	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T 16)	L _R ¹⁶⁾	T _{Rk,i}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	* b,Ck	1	2	1, 1	2	T _{Rk,g} 16)	¯R	"Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10-4 · 1/kN	10 ⁻⁴ ·m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	1,64	0,304	86,595	4,167	1,960	12,08	8,00	15,54	0,346	3,49	20,98	20,98
0,88	2,49	0,257	56,878	4,167	1,960	15,54	8,00	25,73	0,377	4,49	24,82	24,82
1,00	3,48	0,225	40,735	4,167	1,960	18,98	8,00	38,41	0,403	5,48	28,37	28,37
1,13	4,78	0,198	29,653	4,167	1,960	22,96	8,00	56,23	0,429	6,63	32,21	32,21
1,25	6,20	0,178	22,839	4,167	1,960	26,85	8,00	76,92	0,452	7,75	35,76	35,76
1,50	9,92	0,148	14,281	4,167	1,960	35,57	8,00	116,8	0,496	10,28	43,14	43,14
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	egschei	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	11,82	0,304	1,849	4,167	0,980	12,08	8,00	15,54	1,265	17,85	20,98	20,98
0,88	18,00	0,257	1,214	4,167	0,980	15,54	8,00	25,73	1,265	22,97	24,82	24,82
1,00	25,13	0,225	0,870	4,167	0,980	18,98	8,00	38,41	1,265	28,06	28,37	28,37
1,13	34,52	0,198	0,633	4,167	0,980	22,96	8,00	56,23	1,265	33,95	32,21	32,21
1,25	44,83	0,178	0,488	4,167	0,980	26,85	8,00	76,92	1,265	39,71	35,76	35,76
1,50	71,69	0.148	0,305	4,167	0,980	35,57	8,00	116,8	1,265	52,63	43,14	43,14

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 153R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Anlage 1.28.4 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter: FREISTAAT

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

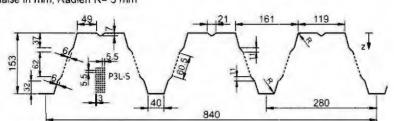
Nenn-	A STATE OF THE PARTY OF THE PAR				F	Elastis	ch aufr	nehmb	are Sc	hnittgrö	ißen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	End		Quer-						Line	are Inte	eraktion				
dicke	- 0	lagerk	trait -	kraft		5	Stützm	oment	е			Zw	ischenau	ıflagerkr	äfte	
t _N N		= 10 mm			I _{a,B} = 1	0 mm	I _{a,B} = 6	0 mm	_{a,8} = 1	60 mm	I _{a,B} = 1	0 mm	l _{a,8} = 6	0 mm	I _{a,8} = 16	60 mm
t _N	+	V _{w,Rk}	M ⁰ _{Rk,8}	M _{c,Rk,B}	M ^o Rk,B	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}		
mm	kNm/m			kN/m			kNr	n/m					kN	/m		
0,75	10,93	4,75	7,19		16,13	12,91	16,13	12,91	16,13	12,91	11,86	9,49	20,72	16,57	30,19	24,15
0.88	13,93	6,55	9,79		20,06	16,05	20,06	16,05	20,06	16,05	16,38	13,11	28,11	22,49	40,66	32,53
1,00	17,05	8,46	12,50		23,88	19,10	23,88	19,10	23,88	19,10	21,15	16,92	35,78	28,63	51,44	41,15
1,13	20,29	10,78	15,76	n.m.	28,06	22,45	28,06	22,45	28,06	22,45	26,96	21,57	44,99	35,99	64,27	51,42
1,25	22,72	13,16	19,06		31,98	25,58	31,98	25,58	31,98	25,58	32,90	26,32	54,29	43,43	77,16	61,73
1,50	27,40	18,82	26,83		40,29	32,23	40,29	32,23	40,29	32,23	47.06	37,65	76,08	60,86	107,12	85,69

Reststützmomente 8)

	l _{a,l}	= 10 m	m	l _{a.f}	= 60 m	m	l _{a,6}	= 160 m	m	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤ min L
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R}$
										M _{R Rk} = max M _{R k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

blech- dicke t _N	Feldmo-	Ve	rbindung	g in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
	M _{c,Rk,F}	R _{w,Rk,A}	M ⁶ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,8}	M _{c,Rk,B}	${R^0}_{Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	12,91	28,77	-	10,93	-	-	28,77	14,39	-	5,46	-	-	14,39
0,88	16,05	46,34	-	13,93	-	-	46,34	23,17	_	6,97	121	-	23,17
1,00	19,10	67,49	-	17,05	-	- 1	67,49	33,74	-	8,52		- 1	33,74
1,13	22,45	96,25	-	20,29	-	- 1	96,25	48,13	-	10,14	-	-	48,13
1,25	25,58	128,98	-	22,72		- 1	128,98	64,49	-	11,36	-	-	64,49
1,50	32,23	194,71	_	27,40	-	-	194,71	97,35	12	13,70	-	- 3	97,35


SAB 153R/840 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f

320 N/mm²

Anlage 1.29.1 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025
eiter: Bearbeiter:
FREISTAAT
ACHSEN

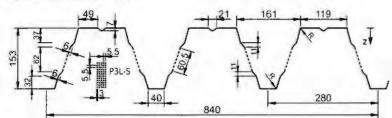
Maßgebende Querschnittswerte

Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
			nicht reduz	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
g	I+	l' _{eff}	A _g	İg	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
kN/m² cm⁴/m	⁴/m	cm²/m	cr	n	cm²/m	cr	n		m	
0,101	371,0	348,9	10,89	5,72	6,16	4,85	6,45	6,70	7,55	9,40
0,119	427,0	421,4	12,89	5,72	6,16	6,52	6,40	6,65	10,25	12,80
0,135	479,0	481,5	14,72	5,72	6,16	8,21	6,36	6,61	11,89	14,85
0,153	544,0	546,5	16,72	5,72	6,16	10,08	6,31	6,54	13,51	16,85
0,169	603,0	606,5	18,55	5,72	6,16	11,78	6,27	6,48	14,99	18,70
0,203	728,0	731,3	22,38	5,72	6,16	15,95	6,13	6,31	18,09	22,60
	g kN/m² 0,101 0,119 0,135 0,153 0,169	g l* _{eff} kN/m² cm 0,101 371,0 0,119 427,0 0,135 479,0 0,153 544,0 0,169 603,0	g I* _{err} I* _{err} kN/m² cm⁴/m 0,101 371,0 348,9 0,119 427,0 421,4 0,135 479,0 481,5 0,153 544,0 546,5 0,169 603,0 606,5	g I* _{eff} I* _{eff} A _g kN/m² cm³/m cm²/m 0,101 371,0 348,9 10,89 0,119 427,0 421,4 12,89 0,135 479,0 481,5 14,72 0,153 544,0 546,5 16,72 0,169 603,0 606,5 18,55	Tem Tem Ag ig cm²/m cm²/m	micht reduzierter Querschnitt g	Diegond Page Page	nicht reduzierter Querschnitt wirksamer Querschold wirksamer wirksamer Querschold wirksamer wirk	Segund S	Dispension Dis

Schubfeldwerte

	G	onzzuetone	der Gebrau	chetaualiel	akoit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	enzzustant	i dei Gebiau	icristaugiici	ikeil '					ı	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{I,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	' '4	1 2	1, 1	. 2	"Rk,g	TR	Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m ² /kN	10⁴·1/kN	10-4 · m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	1,66	0,304	66,470	4,167	1,960	11,70	8,00	14,38	0,675	2,12	13,53	18,00
0,88	2,52	0,257	43,659	4,167	1,960	15,06	8,00	23,18	0,734	2,72	16,00	21,29
1,00	3,52	0,225	31,267	4,167	1,960	18,39	8,00	33,90	0,785	3,33	18,29	24,34
1,13	4,84	0,198	22,762	4,167	1,960	22,25	8,00	48,48	0,836	4,03	20,76	27,63
1,25	6,29	0,178	17,531	4,167	1,960	26,02	8,00	65,07	0,881	4,71	23,05	30,67
1,50	10,05	0,148	10,962	4,167	1,960	34,47	8,00	110,6	0,968	6,24	27,81	37,01
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,60	0,304	40,592	4,167	0,980	11,70	8,00	14,38	1,038	5,24	13,53	18,00
0,88	2,44	0,257	26,661	4,167	0,980	15,06	8,00	23,18	1,038	6,74	16,00	21,29
1,00	3,41	0,225	19,094	4,167	0,980	18,39	8,00	33,90	1,038	8,23	18,29	24,34
1,13	4,68	0,198	13,900	4,167	0,980	22,25	8,00	48,48	1,038	9,96	20,76	27,63
1,25	6,07	0,178	10,706	4,167	0,980	26,02	8,00	65,07	1,038	11,65	23,05	30,67
1,50	9,71	0,148	6,694	4,167	0,980	34,47	8,00	110,6	1,038	15,44	27,81	37,01

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 153R/840 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R≃ 5 mm

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

Anlage 1.29.2 zum Prüfbescheid

ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T25-122
Landesdirektion Sachsen

Leiter:

Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 er: Bearbeiter:

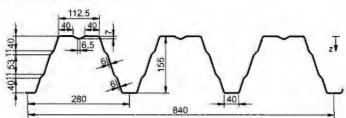
Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-		Endaufla	gerkraft ⁶	5)	Elast	tisch aufi	nehmbar	e Schnitt	tgrößen a	an Zwisc	henaufla	gern 1) 2)	4) 5) 7)
blech-	ment			gondan		Quer-			Qua	dratisch	e Intera	ktion		
dicke						kraft		Stützm	omente		Zw	rischenau	ıflagerkra	äfte
t _N		_{a,A1} = 40 mm	I _{a,A2} = 90 mm	l _{a.A1} = 40 mm	I _{a.A2} = 90 mm		I _{a,B} = 6	0 mm	I _{a.B} = 10	60 mm	I _{a,8} = 6	60 mm	I _{a,B} = 16	60 mm
t _N	M _{c,Rk,F}	R _{T,v}	v,Rk,A	$R_{g,v}$	v,Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		kN			kN/m		kNr	n/m			kN		
0,75	13,75	7,79	9,52	7,79	9,52		12,04	8,42	14,23	10,77	17,04	15,27	23,61	21,02
0,88	17,60	11,97	14,38	11,97	14,38		16,15	11,41	18,18	14,48	23,95	21,37	35,73	30,86
1,00	21,16	15,83	18,87	15,83	18,87		19,93	14,17	21,82	17,89	30,31	27,00	46,90	39,94
1,13	24,03	17,97	21,42	17,97	21,42	n.m.	22,63	16,08	24,77	20,32	34,44	30,66	53,25	45,35
1,25	26,67	19,95	23,78	19,95	23,78		25,13	17,86	27,50	22,55	38,25	34,03	59,10	50,34
1,50	32,18	24,07	28,69	24,07	28,69		30,32	21,54	33,18	27,21	46,14	41,06	71,31	60,75

Reststützmomente 8)

	l _a ,	_e = 60 mm		l _{a,8}	= 160 mm		Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	
0,75	9,28	9,95	1,88	8,56	9,24	2,04	M _{R,Rk} = 0 für L≤min L
0,88	8,14	8,82	2,75	7,57	8,25	2,96	
1,00	7,59	8,27	3,55	7,08	7,77	3,81	$M_{R,Rk} = \frac{L - min L}{max M_{R,Rk}}$
1,13	7,59	8,27	4,03	7,08	7,77	4,33	$M_{R,Rk} = \frac{1}{\text{max L} - \text{min L}} \cdot \text{max M}_{R,Rk}$
1,25	7,59	8,27	4,47	7,08	7,77	4,80	
1,50	7,59	8,27	5,40	7,08	7,77	5,79	M _{R,Rk} = max M _{R,k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)


	Feldmo-	Ve	erbindung	j in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlieg	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	10,41	14,38	_	12,52	-	-	14,38	7,19	-	6,26	-	-	7,19
0,88	13,46	23,18	-	15,59	-	-	23,18	11,59	-	7,79	(*)	-	11,59
1,00	16,30	33,90	-	18,55		-	33,90	16,95	-	9,27	-	-	16,95
1,13	18,93	48,48	-	21,78	-	-	48,48	24,24	1	10,89	-	-	24,24
1,25	21,23	65,07	-	24,80	-	-	65,07	32,53	-	12,40	-	-	32,53
1,50	25,60	110,65	-	31,15	-	-	110,65	55,32	-	15,57	1.2	-	55,32

SAB 155R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Maße in mm, Radien R= 6 mm

Positivlage

320 N/mm²

Leiter:

Anlage 1,30,1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Bearbeiter: FREISTAAT SACHSEN

Maßgebende Querschnittswerte

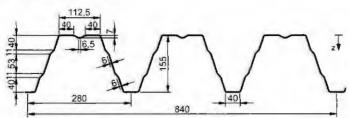
Nennstreckgrenze des Stahlkernes f =

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten ¹³⁾
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt 12)	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	I- eff	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	Lgr	L _{gr}
mm	kN/m²	cm ^c	¹/m	cm²/m	cr	n	cm²/m	cr	m		m
0,75	0,107	382,4	368,8	12,43	5,50	6,58	5,23	6,28	6,95	9,85	12,31
0,88	0,126	463,6	444,5	14,70	5,50	6,58	7,03	6,23	6,95	11,65	14,56
1,00	0,143	529,7	507,9	16,80	5,50	6,58	8,84	6,19	6,95	13,31	16,64
1,13	0,161	601,2	576,6	19,08	5,50	6,58	10,94	6,15	6,95	15,11	18,89
1,25	0,179	667,2	639,9	21,17	5,50	6,58	12,92	6,11	6,92	16,78	20,97
1,50	0,214	804,6	771,8	25,54	5,50	6,58	16,72	6,02	6,87	20,24	25,31
	li										

Schubfeldwerte

	G	enzzuetano	d der Gebrau	chetaualich	akait 17)			Grenzzus	tand der	Tragfähi	gkeit 18)	
	O,	CHZZUSIANI	dei Oebiau	icristaugiici	incit					i	_asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,i}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	- b,ck	3.1	,,,	33.1	2	Rk,g	¬R	* Rk,I	. ,3		130 mm	280 mm
mm	kN/m	10 ⁻⁴ ·m/kN	10⁴·m²/kN	10⁴ ·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	•	kN/m	kN	kN
Normall	pefestigur	g: Verbind	ung in jedem	Untergurt								
0,75	2,295	0,304	50,545	4,167	1,960	12,19	8,00	14,98	0,707	2,64	12,17	16,20
0,88	3,494	0,257	33,199	4,167	1,960	15,68	8,00	24,80	0,769	3,40	14,40	19,16
1,00	4,879	0,225	23,776	4,167	1,960	19,15	8,00	37,02	0,822	4,15	16,46	21,90
1,13	6,702	0,198	17,308	4,167	1,960	23,17	8,00	54,19	0,876	5,03	18,69	24,87
1,25	8,702	0,178	13,331	4,167	1,960	27,09	8,00	74,12	0,923	5,88	20,75	27,61
1,50	13,916	0,148	8,336	4,167	1,960	35,89	8,00	116,80	1,014	7,79	25,03	33,31
Sonderl	pefestigur	g: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	2,244	0,304	27,754	4,167	0,980	12,19	8,00	14,98	1,078	6,97	12,17	16,20
0,88	3,416	0,257	18,229	4,167	0,980	15,68	8,00	24,80	1,078	8,96	14,40	19,16
1,00	4,770	0,225	13,056	4,167	0,980	19,15	8,00	37,02	1,078	10,95	16,46	21,90
1,13	6,553	0,198	9,504	4,167	0,980	23,17	8,00	54,19	1,078	13,25	18,69	24,87
1,25	8,508	0,178	7,320	4,167	0,980	27,09	8,00	74,12	1,078	15,50	20,75	27,61
1,50	13,606	0,148	4,577	4,167	0,980	35,89	8,00	116,80	1,078	20,54	25,03	33,31

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße". (Klasse 1 nach DIN EN 508-1:2014)


SAB 155R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f, =

320 N/mm²

Anlage 1.30.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Bearbeiter: Leiter: FREISTAAT CHSEN

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

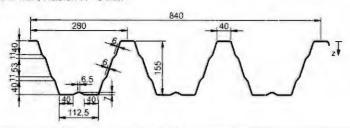
Nenn-	Feldmo-					Elastis	ch aufr	nehmb	are Sc	hnittgr	ößen an	Zwische	nauflage	ern ^{1) 2) 4)}	5) 7)	
blech-	ment		auf-	Quer-					1	Quadra	atische	Interakti	on			
dicke		iagen	craft 6)	kraft	Stutzmomente Zwischenaunagerk				uflagerkr	äfte						
		_{a1} = 40 mm	_{a2} = 90 mm		= '	I0 mm	l _{a,6} = €	60 mm	1 _{a,B} = 1	60 mm	I _{a.B} = 1	0 mm	I _{a,B} = 6	0 mm	I _{a,B} = 16	30 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	Mº Rk,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,8}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m kNm/m kN/m												
0,75	16,46	14,04	15,87		-	-	11,62	7,60	13,06	10,71	-	-	19,62	16,94	37,70	28,35
0,88	21,47	21,71	23,96		-	-	14,68	10,67	17,22	14,78	-		28,76	22,53	54,83	40,03
1,00	26,10	28,80	31,43		-	-	17,51	13,50	21,06	18,53	-		37,20	27,69	70,64	50,81
1,13	30,89	38,71	40,53	n.m.	-	_	22,66	18,06	24,74	22,91	-	-	48,91	37,26	94,20	64,75
1,25	35,31	47,87	48,92		-	-	27,41	22,26	28,13	26,95	-		59,72	46,10	115,95	77,62
1,50	42,60	57,76	59,02		-	-	33,07	26,86	33,95	32,51	-	-	72,06	55,63	139,91	93,66

Reststützmomente 8)

	l _a ,	_B = 10 m	ım	l _{a,6}	₃ = 60 m	im	l _{a,l}	= 160 m	m	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R Rk} = 0 für L≤mîn L
										$M_{RRk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{RRk}$
										(1) LA L (1) III L
										M _{RRk} = max M _{RRk} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	Feldmo-	Ve	erbindung	g in jeden	n anliege	enden Gu	urt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	11,38	28,62	-	12,89	-	-	28,62	14,31	-	6,44	-	-	14,31
0,88	14,89	46,14		16,62		-	46,14	23,07	-	8,31	-	-	23,07
1,00	17,67	67,49	-	19,98	-	-	67,49	33,75	-	9,99	-	-	33,75
1,13	20,47	96,82	-	23,50	-	-	96,82	48,41	-	11,75	_	-	48,41
1,25	22,95	129,74	-	26,67	-	-	129,74	64,87	_	13,34	-	-	64,87
1,50	27,68	196,59	-	32,90	-	-	196,59	98,30	-	16,45	-	-	98,30


SAB 155R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Anlage 1.30.3 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f_{vk} =

320 N/mm²

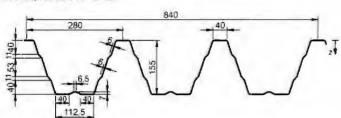
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt 12)	Einfeld- träger	Mehrfeld- träger
t _N	g	+ eff	l' _{eff}	Ag	i,	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm ^c	/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,107	368,8	382,4	12,43	5,50	8,92	5,23	6,28	8,55		
0,88	0,126	444,5	463,6	14,70	5,50	8,92	7,03	6,23	8,55		
1,00	0,143	507,9	529,7	16,80	5,50	8,92	8,84	6,19	8,55		17
1,13	0,161	576,6	601,2	19,08	5,50	8,92	10,94	6,15	8,55		
1,25	0,179	639,9	667,2	21,17	5,50	8,92	12,92	6,11	8,58		
1,50	0,214	771,8	804.6	25.54	5.50	8,92	16,72	6,02	8,63		

Schubfeldwerte

	Gr	enzzuetano	d der Gebrau	chetaualich	rkeit 17)			Grenzzus	tand der	Tragfähi	gkeit 18)	
4	U.	CHZZGStaric	dei Ochiad	icristaugiici	INGR						asteinleitu	ıng
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,i}	K, 19)	T _{1,Rk} 22)	F _{t,Rk} ²¹⁾	für a ≥
	D,CR	1	2		2	Rk,g	¬R	KK,I	3		130 mm	280 mn
mm	kN/m	10⁴·m/kN	10⁴·m²/kN	10⁴-1/kN	10⁴ m²/kN	kN/m	m	kN/m		kN/m	kN	kN
Normalb	pefestigun	ıg: Verbindi	ung in jedem	Untergurt								
0,75	1,736	0,304	86,193	4,167	1,960	12,19	8,00	14,98	0,374	3,39	18,88	18,88
0.88	2,643	0,257	56,613	4,167	1,960	15,68	8,00	24,80	0,407	4,36	22,34	22,34
1,00	3,690	0,225	40,545	4,167	1,960	19,15	8,00	37,02	0,435	5,33	25,53	25,53
1,13	5,069	0,198	29,516	4,167	1,960	23,17	8,00	54,19	0,464	6,45	28,99	28,99
1,25	6,582	0,178	22,733	4,167	1,960	27,09	8,00	74,12	0,489	7,55	32,18	32,18
1,50	10,526	0,148	14,215	4,167	1,960	35,89	8,00	116,80	0,537	10,00	38,83	38,83
Sonderb	efestigur	ıg: Verbindı	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	12,41	0,304	1,784	4,167	0,980	12,19	8,00	14,98	1,273	18,26	18,88	18,88
0.88	18,89	0,257	1,172	4,167	0,980	15,68	8,00	24,80	1,273	23,50	22,34	22,34
1,00	26,38	0,225	0,839	4,167	0,980	19,15	8,00	37,02	1,273	28,71	25,53	25,53
1,13	36,24	0,198	0,611	4,167	0,980	23,17	8,00	54,19	1,273	34,74	28,99	28,99
1,25	47,05	0,178	0,471	4,167	0,980	27,09	8,00	74,12	1,273	40,63	32,18	32,18
1,50	75,25	0,148	0,294	4,167	0,980	35,89	8,00	116,80	1,273	53,85	38,83	38,83

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße". (Klasse 1 nach DIN EN 508-1:2014)


SAB 155R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Anlage 1.30.4 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Bearbeiter: Leiter: EREISTAAT CHSEN

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				ŀ	Elastis	ch auf	nehmb	are So	chnittgr	ößen an	Zwische	nauflage	ern ^{1) 2) 4)}	5) 7)	
blech-	ment	End	lauf-	Quer-						Line	eare Inte	eraktion				
dicke		lagen	kraft ⁶⁾	kraft	Stützmomente Zwischenau I _{aB} = 10 mm I _{aB} = 60 mm I _{aB} = 160 mm I _{aB} = 10 mm I _{aB} = 60 mm				uflagerkr	äfte						
t _N		= 10 mm	l _{a2} = 40 mm		I _{a,B} = 1	I0 mm		30 mm	I _{a,B} = 1	60 mm	_{aB} = 1	0 mm	l _{a e} = 6	60 mm	1 _{a,2} = 16	30 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ^o Rk,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m			kNr	n/m					kN	l/m		
0,75	11,38	4,85	7,34		16,11	12,89	16,11	12,89	16,11	12,89	12,11	9,69	21,16	16,93	30,83	24,66
0,88	14,89	6,88	10,27		20,78	16,62	20,78	16,62	20,78	16,62	17,19	13,75	29,49	23,59	42,65	34,12
1,00	17,67	9,12	13,47	1	24,97	19,98	24,97	19,98	24,97	19,98	22,80	18,24	38,57	30,85	55,43	44,35
1,13	20,47	11,99	17,52	n.m.	29,37	23,50	29,37	23,50	29,37	23,50	29,98	23,98	50,03	40,02	71,48	57,18
1,25	22,95	15,10	21,87		33,34	26,67	33,34	26,67	33,34	26,67	37,74	30,19	62,27	49,82	88,51	70,81
1,50	27,68	23,16	33,01		41,13	41,13 32,90 41		32,90	41,13	32,90	57,90	46,32	93,60	74,88	131,79	105,43

Reststützmomente 8)

	l _{a,l}	_B = 10 m	m	a, i	_e = 60 m	rn	l _{a,l}	_B = 160 m	m	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R Rk} = 0 für L≤min L
										I a mid I
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
										M _{R.Rk} = max M _{R.Rk} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	Feldmo-	Ve	erbindun	g in jeder	n anlieg	enden G	urt	Ver	bindung	in jedem	2. anlie	genden G	Burt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° Rk,B	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° Rk,B	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	12,89	28,62	-	11,38	-	-	28,62	14,31	-	5,69	-	-	14,31
0,88	16,62	46,14	-	14,89	-		46,14	23,07	-	7,44	-	-	23,07
1,00	19,98	67,49	-	17,67	-	-	67,49	33,75	-	8,84	-	-	33,75
1,13	23,50	96,82	_	20,47	-	-	96,82	48,41	-	10,24	-	-	48,41
1,25	26,67	129,74	-	22,95	-	-	129,74	64,87	-	11,48	-	-	64,87
1,50	32,90	196,59	-	27,68	-	-	196,59	98,30	_	13,84	-		98,30

SAB 155R/840 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Positivlage Maße in mm, Radien R= 6 mm P3L-S

Landesstelle für Bautechnik Leipzig, den 05.08.2025

SACHSEN

Anlage 1.31.1 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Leiter: Bearbeiter: FREISTAAT

Nennstreckgrenze des Stahlkernes f., = 320 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	i-	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm ⁴	¹ /m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,101	377,4	362,6	10,92	5,82	6,42	4,82	6,52	6,88	9,85	12,31
0,88	0,118	457,2	437,5	12,91	5,82	6,42	6,46	6,49	6,86	11,65	14,56
1,00	0,134	522,4	499,9	14,76	5,82	6,42	8,10	6,46	6,86	13,31	16,64
1,13	0,151	593,0	567,5	16,75	5,82	6,42	9,99	6,42	6,86	15,11	18,89
1,25	0,168	658,1	629,8	18,59	5,82	6,42	11,79	6,38	6,84	16,78	20,97
1,50	0,201	793,6	759,6	22,43	5,82	6,41	15,12	6,29	6,79	20,24	25,31

Schubfeldwerte

	Gr	enzzuetana	der Gebrau	chetaualich	skait 17)			Grenzzus	tand der	Tragfähi	gkeit 18)	
	01	CHZZUSIANI	dei Gebiau	cristaugiloi	IKISIL					l	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K ₂ ^{14) 15)}	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,i}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	- B,CK	1 1	2	1	2	' Rk,g	TR	Rk.I	. "3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10-⁴ ·m²/kN	10⁴ ·1/kN	10-4 · m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normall	pefestigun	ıg: Verbindi	ung in jedem	Untergurt								
0,75	1,912	0,304	60,661	4,167	1,960	12,04	8,00	14,30	0,707	2,20	12,17	16,20
0,88	2,911	0,257	39,844	4,167	1,960	15,49	8,00	23,04	0,769	2,83	14,40	19,16
1,00	4,065	0,225	28,535	4,167	1,960	18,93	8,00	33,70	0,822	3,46	16,46	21,90
1,13	5,584	0,198	20,773	4,167	1,960	22,89	8,00	48,36	0,876	4,19	18,69	24,87
1,25	7,251	0,178	15,999	4,167	1,960	26,77	8,00	64,93	0,923	4,90	20,75	27,61
1,50	11,596	0,148	10,004	4,167	1,960	35,47	8,00	110,51	1,014	6,49	25,03	33,31
Sonderl	oefestigur	g: Verbind	ung mit 2 Sc	nrauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,870	0,304	33,309	4,167	0,980	12,04	8,00	14,30	1,078	5,80	12,17	16,20
0,88	2,847	0,257	21,878	4,167	0,980	15,49	8,00	23,04	1,078	7,47	14,40	19,16
1,00	3,975	0,225	15,669	4,167	0,980	18,93	8,00	33,70	1,078	9,13	16,46	21,90
1,13	5,460	0,198	11,406	4,167	0,980	22,89	8,00	48,36	1,078	11,04	18,69	24,87
1,25	7,089	0,178	8,785	4,167	0,980	26,77	8,00	64,93	1,078	12,91	20,75	27,61
1,50	11,337	0,148	5,493	4,167	0,980	35,47	8,00	110,51	1,078	17,12	25,03	33,31

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße". (Klasse 1 nach DIN EN 508-1:2014)

SAB 155R/840 P3L-S

Anlage 1.31.2 zum Prüfbescheid
ALS TYPENENTWURF

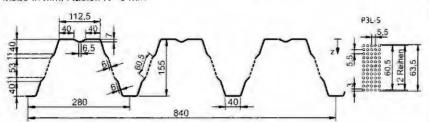
in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

FREISTAAT

Bearbeiter:


Leiter:

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f_{v.k} =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

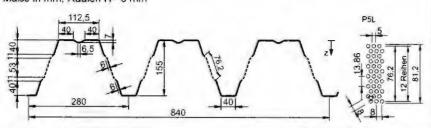
Nenn-	Feldmo-				1	Elastis	ch aufr	nehmb	are Sc	hnittgr	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	End	auf-	Quer-						Line	eare Int	eraktion				
dicke		iageri	kraft ⁶⁾	kraft			Stützm	oment	e			Zw	ischena	uflagerkr	äfte	
		l _{a1} = 40 mm	_{a2} = 90 mm		= 1	10 mm	= 6	60 mm	I _{a,8} = 1	60 mm	_{a B} = 1	10 mm	I _{a.B} = 6	60 mm	_{a,B} = 16	80 mm
t _N	M _{c,Rk,F}	R _w	.Rk,A	V _{w,Rk}	Mº Rk,8	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	M ^p _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		/m	kN/m				n/m					kN	l/m		
0,75	15,37	10,29	11,56	14,30	=	-	12,59	6,81	15,42	9,41	-	-	21,84	16,72	36,77	24,89
0,88	20,81	15,24	17,18	23,04	-	-	18,62	9,96	20,00	13,46	-	-	29,35	22,97	56,24	35,88
1,00	25,83	19,81	22,36	33,70	-	-	24,18	12,87	24,23	17,19	-	-	36,29	28,74	74,22	46,02
1,13	30,12	25,65	29,16	48,36	-	-	28,26	16,64	28,17	21,14	-	-	50,11	38,13	95,66	56,87
1,25	34,08	31,03	35,43	64,93		-	32,03	20,11	31,82	24,78	-	-	62,86	46,80	115,45	66,90
1,50	41,12	37,45	42,75	110,51	-	-	38,64	24,27	38,39	29,90	-	-	75,85	56,46	139,31	80,72

Reststützmomente 8)

	l _a	_B = 10 m	ım	l _{a,t}	= 60 m	im	l _{a,t}	= 160 m	ım	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										$M_{RRk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{RRk}$
										max E = mm E
										M _{R.Rk} = max M _{R.Rk} für L≥max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

	Feldmo-	Ve	erbindung	g in jeden	n anliege	enden Gι	irt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,8}	M _{c,Rk,B}	$R^{o}_{Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	10,84	14,30	-	12,84	-	-	14,30	7,15	-	6,42	-	-	7,15
0,88	14,24	23,04	-	16,58	-	-	23,04	11,52		8,29	-	-	11,52
1,00	17,04	33,70	-	19,93	-	-	33,70	16,85	-	9,97	-	-	16,85
1,13	19,78	48,36	-	23,43	-	-	48,36	24,18	-	11,71	-	-	24,18
1,25	22,19	64,93		26,57	-	-	64,93	32,47	-	13,29	(-	-	32,47
1,50	26,76	110,51	-	32,74	-	-	110,51	55,25	-	16,37	-	-	55,25


SAB 155R/840 P5L

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f_{y,k} = 320 N/mm²

Anlage 1.32.1 zum Prüfbescheid

ALS TYPENENTWURF

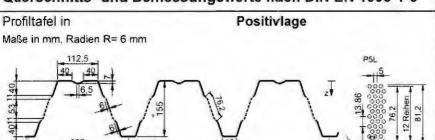
in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstür	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	1+ eff	I- eff	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm ⁴	¹/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,095	348,5	349,2	9,66	6,08	6,24	4,54	6,70	6,77	1	
0,88	0,111	422,0	422,0	11,43	6,08	6,24	6,09	6,67	6,75		/
1,00	0,126	482,2	482,2	13,06	6,08	6,24	7,65	6,63	6,75		
1,13	0,142	547,3	547,3	14,82	6,08	6,24	9,44	6,60	6,74		
1,25	0,158	607,4	607,4	16,45	6,08	6,24	11,13	6,56	6,72		
1,50	0,189	732,6	732,6	19,85	6,08	6,24	14,61	6,44	6,61		


Schubfeldwerte

	G	enzzustand	d der Gebrau	chetaunlich	nkrait 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	J.	CHZZUGIU	a dei Gebiae	Chataugho	IKGK					L	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K* 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	B,CK		2	. 1	2	Rk,g	-R	· Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ m²/kN	10⁴ ·1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normall	pefestigur	ıg: Verbindi	ung in jedem	Untergurt								
0,75	1,718	0,304	67,513	4,167	1,960	11,72	8,00	10,35	0,707	1,98	12,17	16,20
0,88	2,616	0,257	44,344	4,167	1,960	15,08	8,00	16,75	0,769	2,55	14,40	19,16
1,00	3,653	0,225	31,758	4,167	1,960	18,42	8,00	24,58	0,822	3,11	16,46	21,90
1,13	5,018	0,198	23,119	4,167	1,960	22,28	8,00	35,39	0,876	3,76	18,69	24,87
1,25	6,515	0,178	17,806	4,167	1,960	26,05	8,00	47,68	0,923	4,40	20,75	27,61
1,50	10,419	0,148	11,134	4,167	1,960	34,52	8,00	81,59	1,014	5,83	25,03	33,31
Sondert	pefestigur	ng: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,680	0,304	37,072	4,167	0,980	11,72	8,00	10,35	1,078	5,22	12,17	16,20
0,88	2,558	0,257	24,349	4,167	0,980	15,08	8,00	16,75	1,078	6,71	14,40	19,16
1,00	3,571	0,225	17,438	4,167	0,980	18,42	8,00	24,58	1,078	8,20	16,46	21,90
1,13	4,906	0,198	12,695	4,167	0,980	22,28	8,00	35,39	1,078	9,92	18,69	24,87
1,25	6,369	0,178	9,777	4,167	0,980	26,05	8,00	47,68	1,078	11,60	20,75	27,61
1,50	10,186	0,148	6,114	4,167	0,980	34,52	8,00	81,59	1,078	15,38	25,03	33,31

 a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße". (Klasse 1 nach DIN EN 508-1:2014)

SAB 155R/840 P5L

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1.32.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f, =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				E	Elastis	ch aufr	nehmb	are Sc	hnittgr	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	End	auf-	Quer-						Line	eare Inte	eraktion				
dicke		lageri	kraft 6)	kraft		5	Stützm	oment	е			Zw	ischenaı	uflagerkra	äfte	
		_{a1} = 10 mm	_{a2} = 40 mm		I _{a,B} = 1	0 mm	I _{a,B} = 6	60 mm	I _{a.8} = 1	60 mm	I _{a,B} = 1	0 mm	I _{a,B} = 6	60 mm	i _{a,8} = 16	60 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ^o _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m			kNr	n/m					k٨	l/m		
0,75	12,65	4,80	7,27	10,35	12,96	10,37	12,96	10,37	12,96	10,37	12,00	9,60	20,95	16,76	27,93	22,34
0,88	16,26	6,65	9,94	16,75	17,09	13,67	17,09	13,67	17,09	13,67	16,63	13,30	28,53	22,82	37,44	29,96
1,00	19,47	8,61	12,72	24,58	20,10	16,08	20,10	16,08	20,10	16,08	21,52	17,22	36,40	29,12	47,22	37,78
1,13	22,78	10,99	16,06	35,39	23,37	18,70	23,37	18,70	23,37	18,70	27,48	21,98	45,86	36,69	58,85	47,08
1,25	25,72	13,43	19,46	47,68	26,24	20,99	26,24	20,99	26,24	20,99	33,58	26,87	55,41	44,33	70,49	56,40
1,50	31,50	19,25	27,44	81,59	31,65	25,32	31,65	25,32	31,65	25,32	48,13	38,51	77,81	62,25	97,49	77,99

Reststützmomente 8)

	l _{a,l}	_B = 10 m	ım	J _{a,6}	$_{\rm s} = 60 \text{m}$	m	l _{a,i}	= 160 m	im.	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
										max E - mar E
	_									M _{R,Rk} = max M _{R,Rk} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	Feldmo-	Ve	erbindung	j in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlieg	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,8}	R _{w,Rk,8}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	10,37	10,35	-	12,65	-	-	10,35	5,17	-	6,33	=	-	5,17
0,88	13,67	16,75	-	16,26	-	-	16,75	8,38	-	8,13	-	2	8,38
1,00	16,08	24,58	-	19,47	-	-	24,58	12,29	-	9,73	-	-	12,29
1,13	18,70	35,39	-	22,78	-	-	35,39	17,70	-	11,39	-	-	17,70
1,25	20,99	47,68	-	25,72	-	-	47,68	23,84	-	12,86	-	-	23,84
1,50	25,32	81,59	-	31,50	-	-	81,59	40,79	-	15,75	-	-	40,79
								1000					

SAB 158R/750

Anlage 1.33.1 zum Prüfbescheid
ALS TYPENENTWURF

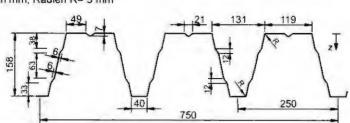
in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

> FREISTAAT SACHSEN

Bearbeiter:


Leiter:

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

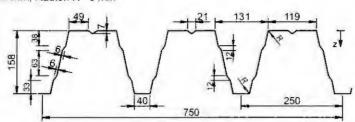
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstüt	zweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	l- eff	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	Lgr
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,120	476,0	435,0	13,93	5,63	6,59	5,83	6,45	7,05	9,08	11,35
0,88	0,141	536,0	523,1	16,48	5,63	6,59	7,85	6,40	7,02	10,97	13,70
1,00	0,160	591,0	597,7	18,83	5,63	6,58	9,90	6,35	6,98	12,54	15,65
1,13	0,181	671.0	678,3	21,38	5,63	6,58	12,17	6,30	6,92	14,24	17,80
1,25	0,200	745,0	752,8	23,73	5,63	6,58	14,27	6,24	6,86	15,80	19,75
1,50	0,240	899,0	907,7	28,62	5,63	6.58	18,99	6,12	6.73	19,07	23.80

Schubfeldwerte

	G	enzzuetan/	d der Gebrau	chetaualich	rkeit 17)		G	irenzzus	tand der	Tragfähi	gkeit 18)	
		CHEEDOWN	a dei Ocbiac	oriotaugiioi	HXCALL					L	_asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, ¹⁵⁾	K* 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	7.1	. `2	1	** 2	* Rk,g	-R	- Rk,I	, ,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10⁴ ·1/kN	10⁴ m²/kN	kN/m	m	kN/m	•	kN/m	kN	kN
Normalb	efestigur	ig: Verbindi	ung in jedem	Untergurt								
0,75	1,73	0,340	66,992	4,667	1,750	13,38	8,00	15,56	0,696	2,65	13,53	18,00
0,88	2,63	0,288	44,002	4,667	1,750	17,22	8,00	25,77	0,757	3,41	16,00	21,29
1,00	3,67	0,252	31,513	4,667	1,750	21,03	8,00	38,46	0,809	4,16	18,29	24,34
1,13	5,04	0,222	22,941	4,667	1,750	25,44	8,00	56,30	0,862	5,04	20,76	27,63
1,25	6,54	0,200	17,669	4,667	1,750	29,74	8,00	77,02	0,908	5,89	23,05	30,67
1,50	10,47	0,165	11,048	4,667	1,750	39,40	8,00	116,8	0,998	7,81	27,81	37,01
Sonderb	efestigur	ıg: Verbindi	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,63	0,340	46,115	4,667	0,875	13,38	8,00	15,56	1,127	5,94	13,53	18,00
0,88	2,48	0,288	30,289	4,667	0,875	17,22	8,00	25,77	1,127	7,64	16,00	21,29
1,00	3,47	0,252	21,693	4,667	0,875	21,03	8,00	38,46	1,127	9,33	18,29	24,34
1,13	4,76	0,222	15,791	4,667	0,875	25,44	8,00	56,30	1,127	11,29	20,76	27,63
1,25	6,18	0,200	12,163	4,667	0,875	29,74	8,00	77,02	1,127	13,21	23,05	30,67
1,50	9,89	0,165	7,605	4,667	0,875	39,40	8,00	116.8	1,127	17,51	27,81	37,01

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 158R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

ALS TYPENENTWURF in baustatischer Hinsicht geprüft.

Anlage 1.33.2 zum Prüfbescheid

Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 FREISTAAT Bearbeiter: SACHSEN

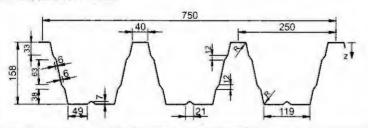
Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Feldmo-	F	Endaufla	gerkraft ⁶	3)	Elast	tisch aufi	nehmbar	e Schnitt	tgrößen a	an Zwisc	henaufla	igern 1) 2)	4) 5) 7)
ment		Lindadiia	gerkian		Quer-			Qua	dratisch	e Interal	ktion		
					kraft		Stützm	omente		Zw	ischena	uflagerkra	äfte
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		I _{a.8} = 6	0 mm	I _{e B} = 10	60 mm	I _{aB} = 6	0 mm	I _{a B} = 16	60 mm				
M _{c,Rk,F}	R _{T,w}	v,Rk,A	R _{G,v}	v,Rk,A	V _{w,Rk}	M ⁰ Rk,B	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
kNm/m					kN/m		kNr	n/m			kN	l/m	
15,52	12,80		12,80	/		14,16	11,65	16,33	14,26	27,70	23,92	40,01	33,34
20,55	18,58	1	18,58	/		18,57	15,65	21,22	18,96	39,60	33,76	58,69	47,68
25,19	23,92	/	23,92	/		22,64	19,34	25,73	23,30	50,63	42,84	75,88	60,92
28,60	27,16	1	27,16		n.m.	25,71	21,96	29,21	26,46	57,50	48,64	86,15	69,17
31,75	30,15	1	30,15		28,54	24,38	32,43	29,37	63,79	54,00	95,61	76,78	
38,31	41,02	1	41,02	1		34,44	29,41	39,13	35,44	77,00	65,15	115,41	92,65
	M _{c,Rk,F} kNm/m 15,52 20,55 25,19 28,60 31,75	M _{c,Rk,F} R _{T,w} kNm/m 15,52 12,80 20,55 18,58 25,19 23,92 28,60 27,16 31,75 30,15	I	I	Table Tabl	Control Cont	ment $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ment $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Reststützmomente 8)

	l _{a,l}	_B = 60 mm		l _{a E}	= 160 mm		Reststützmomente M _{R,Rk}				
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}					
mm	m	m	kNm/m	m	m	kNm/m					
0,75	6,38	7,08	3,20	5,58	6,30	3,66	$M_{R,Rk} = 0$	für L≤min L			
0,88	6,47	7,17	4,18	5,56	6,28	4,87					
1,00	6,52	7,22	5,08	5,55	6,26	5,98	$M_{R,Rk} = \frac{L - \frac{L}{R}}{R}$	min L max M _{R,Rk}			
1,13	6,52	7,22	5,77	5,55	6,26	6,79	max L	- min L			
1,25	6,52	7,22	6,40	5,55	6,26	7,54					
1,50	6,52	7,22	7,73	5,55	6,26	9,10	$M_{R,Rk} = \max N$	l _{R,k} für L≥max L			

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn- blech- dicke	ment	Ve	erbindung	j in jeden	n anliege	enden Gu	irt	Verbindung in jedem 2. anliegenden Gurt						
		Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft	M/V-Interaction					
		R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	
0,75	12,68	33,88	-	14,94	-	-	33,88	16,94	-	7,47	-	-	16,94	
0,88	16,10	54,59	-	18,60	-	_	54,59	27,30	-	9,30	4		27,30	
1,00	19,79	79,53	-	22,17	-	-	79,53	39,76	-	11,08	-	-	39,76	
1,13	23,38	113,43	-	26,03	-	-	113,43	56,71	-	13,02	-		56,71	
1,25	26,14	152,00	-	29,66	-	-	152,00	76,00	-	14,83	-	-	76,00	
1,50	31,52	227,02	-	37,31	- 7	_	227,02	113,51	-	18,65	_	-	113,51	


SAB 158R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

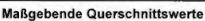
Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes $f_{y,k}$ =

320 N/mm²


Anlage 1.33.3 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter:

SACHSEN

Nenn-	Eigenlast	iigenlast Biegung ¹¹⁾			Norr	Grenzstützweiten 13)					
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksamer Querschnitt 12)			Einfeld- träger	Mehrfeld- träger
t _N	g	I+ eff	l· _{eff}	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m cm c		cm²/m	cm		m		
0,75	0,120	435,0	476,0	13,93	5,63	9,21	5,83	6,45	8,75	8,15	10,15
0,88	0,141	523,1	536,0	16,48	5,63	9,21	7,85	6,40	8,78	10,35	12,90
1.00	0,160	597,7	591,0	18,83	5,63	9,22	9,90	6,35	8,82	11,35	14,15
1,13	0,181	678,3	671,0	21,38	5,63	9,22	12,17	6,30	8,88	12,10	15,10
1,25	0,200	752,8	745,0	23,73	5,63	9,22	14,27	6,24	8,94	12,75	15,90
1,50	0,240	907,7	899,0	28,62	5,63	9,22	18,99	6,12	9,07	14,00	17,50

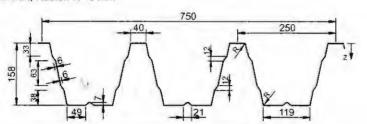
Schubfeldwerte

	G	renzzuetano	d der Gebrau	chetaudicl	nkesit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)		
	0,	CHZZUSIAIN	der Gebrac	icristaugiici	INCIL					Lasteinleitung			
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, ¹⁵⁾	K*, 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥	
	B,GK	1.4	-2	1	2	'Rk,g	¬R	- Rk,I	3		130 mm	280 mm	
mm	kN/m	10⁴.m/kN	10⁴-m²/kN	10⁴ ·1/kN	10⁴ m²/kN	kN/m	m	kN/m	•	kN/m	kN	kN	
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt									
0,75	1,53	0,340	93,181	4,667	1,750	13,38	8,00	15,56	0,351	3,74	20,98	20,98	
0,88	2,33	0,288	61,203	4,667	1,750	17,22	8,00	25,77	0,382	4,81	24,82	24,82	
1,00	3,25	0,252	43,832	4,667	1,750	21,03	8,00	38,46	0,408	5,87	28,37	28,37	
1,13	4,46	0,222	31,909	4,667	1,750	25,44	8,00	56,30	0,435	7,11	32,21	32,21	
1,25	5,80	0,200	24,576	4,667	1,750	29,74	8,00	77,02	0,458	8,31	35,76	35,76	
1,50	9,27	0,165	15,367	4,667	1,750	39,40	8,00	116,8	0,503	11,02	43,14	43,14	
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	egschei	be in jed	lem Unte	ergurt ²⁰⁾			
0,75	8,85	0,340	2,858	4,667	0,875	13,38	8,00	15,56	1,490	16,10	20,98	20,98	
0,88	13,47	0,288	1,877	4,667	0,875	17,22	8,00	25,77	1,490	20,71	24,82	24,82	
1,00	18,81	0,252	1,344	4,667	0,875	21,03	8,00	38,46	1,490	25,31	28,37	28,37	
1,13	25,83	0,222	0,979	4,667	0,875	25,44	8,00	56,30	1,490	30,62	32,21	32,21	
1,25	33,54	0,200	0,754	4,667	0,875	29,74	8,00	77,02	1,490	35,81	35,76	35,76	
1,50	53,64	0,165	0,471	4,667	0,875	39,40	8,00	116,8	1,490	47,47	43,14	43,14	
	1					1							

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".

SAB 158R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3


Profiltafel in

Negativlage

320 N/mm²

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f

Leiter:

Anlage 1.33.4 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 FREISTAABearbeiter: SACHSEN

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				Elastisch aufnehmbare Schnittgrößen an Zwischenauflagern 1) 2) 4) 5) 7)												
blech- dicke	ment	End	lauf- kraft ⁶⁾	Quer-		Lineare Interaktion											
dicke		lagen	Nait	kraft	Stützmomente					Zwischenauflagerkräfte							
		_{a1} = 10 mm	_{a1} = 10 mm	= = = = = = = = = =		I _{a 8} =	10 mm	1 _{a,6} =	60 mm	 	160 mm	_{a,B} =	10 mm	_{a,B} =	60 mm	l _{a B} = 1	160 mm
t	М	R		V	Mo	M	Mo	M	Mp	M	Rº	R	R ⁰	R	Rº.	R	

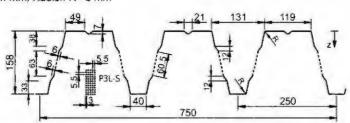
M _{c,Rk,F}	R _{w,Rk,A}	V _{w,Rk}	M ^o _{Rk,B}	M _{c,Rk,B}	M ^o Rk,8	M _{c,Rk,B}	M ^D Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,8}	R _{w,Rk,B}
mm kNm/m kN/m				kNm/m						kN/m				
12,68	5,53 8	3,38	18,67	14,94	18,67	14,94	18,67	14,94	13,83	11,06	24,15	19,32	35,19	28,15
16,10	7,66 11	,45	23,25	18,60	23,25	18,60	23,25	18,60	19,16	15,33	32,88	26,30	47,55	38,04
19,79	9,93 14		27,71	22,17	27,71	22,17	27,71	22,17	24,82	19,86	42,00	33,60	60,36	48,29
23,38	12,71 18	3,57 n.m.	32,54	26,03	32,54	26,03	32,54	26,03	31,77	25,42	53,02	42,42	75,75	60,60
26,14	15,58 22	2,56	37,07	29,66	37,07	29,66	37,07	29,66	38,94	31,15	64,26	51,41	91,34	73,07
31,52	22,52 32	2,09	46,63	37,31	46,63	37,31	46,63	37,31	56,29	45,03	90,99	72,79	128,12	102,49
	kNm/m 12,68 16,10 19,79 23,38 26,14	KNm/m KN/m 12,68 5,53 8 16,10 7,66 11 19,79 9,93 14 23,38 12,71 18 26,14 15,58 22	kNm/m kN/m kN/m 12,68 5,53 8,38 16,10 7,66 11,45 19,79 9,93 14,67 23,38 12,71 18,57 26,14 15,58 22,56	kNm/m kN/m kN/m 12,68 5,53 8,38 18,67 16,10 7,66 11,45 23,25 19,79 9,93 14,67 27,71 23,38 12,71 18,57 n.m. 32,54 26,14 15,58 22,56 37,07	kNm/m kN/m kN/m 12,68 5,53 8,38 18,67 14,94 16,10 7,66 11,45 23,25 18,60 19,79 9,93 14,67 27,71 22,17 23,38 12,71 18,57 32,54 26,03 26,14 15,58 22,56 37,07 29,66	kNm/m kN/m kN/m kN/m kN/m 12,68 5,53 8,38 18,67 14,94 18,67 16,10 7,66 11,45 23,25 18,60 23,25 19,79 9,93 14,67 27,71 22,71 27,71 23,38 12,71 18,57 n.m. 32,54 26,03 32,54 26,14 15,58 22,56 37,07 29,66 37,07	kNm/m kN/m kN/m kNm/m 12,68 5,53 8,38 18,67 14,94 18,67 14,94 16,10 7,66 11,45 23,25 18,60 23,25 18,60 19,79 9,93 14,67 27,71 22,17 27,71 22,17 23,38 12,71 18,57 32,54 26,03 32,54 26,03 26,14 15,58 22,56 37,07 29,66 37,07 29,66	kNm/m kN/m kNm/m 12,68 5,53 8,38 18,67 14,94 18,67 14,94 18,67 16,10 7,66 11,45 23,25 18,60 23,25 18,60 23,25 19,79 9,93 14,67 27,71 22,17 27,71 22,17 27,71 22,17 27,71 23,38 12,71 18,57 32,54 26,03 32,54 26,03 32,54 26,14 15,58 22,56 37,07 29,66 37,07 29,66 37,07 29,66 37,07 29,66 37,07	kNm/m kN/m kN/m kNm/m 12,68 5,53 8,38 18,67 14,94 14,94 18,67 14,94 18,67 14,94 18,67 14,94 18,67 14,94 18,67 14,94 14,94 18,67 14,94 18,67 14,94 18,67 14,94 18,67 14,94 18,67 14,94 18,67 </td <td>kNm/m kN/m kN/m kNm/m 12,68 5,53 8,38 18,67 14,94 18,67 14,94 18,67 14,94 13,83 16,10 7,66 11,45 23,25 18,60 23,25 18,60 23,25 18,60 19,16 19,79 9,93 14,67 27,71 22,17 27,71 22,17 27,71 22,17 27,71 22,17 24,82 23,38 12,71 18,57 32,54 26,03 32,54 26,03 32,54 26,03 31,77 26,14 15,58 22,56 37,07 29,66 37,07 29,66 37,07 29,66 37,07 29,66 38,94</td> <td>kNm/m kN/m kNm/m 12,68 5,53 8,38 18,67 14,94 18,67 14,94 13,83 11,06 16,10 7,66 11,45 23,25 18,60 23,25 18,60 23,25 18,60 19,16 15,33 19,79 9,93 14,67 27,71 22,17 27,71 22,17 27,71 22,17 24,82 19,86 23,38 12,71 18,57 32,54 26,03 32,54 26,03 32,54 26,03 32,54 26,03 32,54 26,03 31,77 25,42 26,14 15,58 22,56 37,07 29,66 37,07 29,66 37,07 29,66 37,07 29,66 38,94 31,15</td> <td>kNm/m kN/m kN/m kNm/m kNm/m kN 12,68 5,53 8,38 18,67 14,94 18,67 14,94 18,67 14,94 13,83 11,06 24,15 16,10 7,66 11,45 23,25 18,60 23,25 18,60 19,16 15,33 32,88 19,79 9,93 14,67 27,71 22,17 27,71 22,17 27,71 22,17 27,71 22,17 27,71 22,17 27,71 22,17 27,71 22,17 27,71 22,17 27,71 25,42 53,02 26,14 15,58 22,56 37,07 29,66 37,07 29,66 37,07 29,66 38,94 31,15 64,26</td> <td>kNm/m kN/m kN/m kNm/m kNm/m kN/m 12,68 5,53 8,38 18,67 14,94 18,67 14,94 13,83 11,06 24,15 19,32 16,10 7,66 11,45 23,25 18,60 23,25 18,60 23,25 18,60 19,16 15,33 32,88 26,30 19,79 9,93 14,67 27,71 22,17 27,71 22,17 27,71 22,17 24,82 19,86 42,00 33,60 23,38 12,71 18,57 32,54 26,03 32,54 26,03 32,54 26,03 32,54 26,03 31,77 25,42 53,02 42,42 26,14 15,58 22,56 37,07 29,66 37,07 29,66 37,07 29,66 38,94 31,15 64,26 51,41</td> <td>kNm/m kN/m kNm/m kNm/m kN/m 12,68 5,53 8,38 18,67 14,94 18,67 14,94 18,67 14,94 13,83 11,06 24,15 19,32 35,19 16,10 7,66 11,45 23,25 18,60 23,25 18,60 23,25 18,60 19,16 15,33 32,88 26,30 47,55 19,79 9,93 14,67 27,71 22,17 27,71 22,17 27,71 22,17 24,82 19,86 42,00 33,60 60,36 23,38 12,71 18,57 32,54 26,03 32,54 26,03 32,54 26,03 31,77 25,42 53,02 42,42 75,75 26,14 15,58 22,56 37,07 29,66 37,07 29,66 37,07 29,66 38,94 31,15 64,26 51,41 91,34</td>	kNm/m kN/m kN/m kNm/m 12,68 5,53 8,38 18,67 14,94 18,67 14,94 18,67 14,94 13,83 16,10 7,66 11,45 23,25 18,60 23,25 18,60 23,25 18,60 19,16 19,79 9,93 14,67 27,71 22,17 27,71 22,17 27,71 22,17 27,71 22,17 24,82 23,38 12,71 18,57 32,54 26,03 32,54 26,03 32,54 26,03 31,77 26,14 15,58 22,56 37,07 29,66 37,07 29,66 37,07 29,66 37,07 29,66 38,94	kNm/m kN/m kNm/m 12,68 5,53 8,38 18,67 14,94 18,67 14,94 13,83 11,06 16,10 7,66 11,45 23,25 18,60 23,25 18,60 23,25 18,60 19,16 15,33 19,79 9,93 14,67 27,71 22,17 27,71 22,17 27,71 22,17 24,82 19,86 23,38 12,71 18,57 32,54 26,03 32,54 26,03 32,54 26,03 32,54 26,03 32,54 26,03 31,77 25,42 26,14 15,58 22,56 37,07 29,66 37,07 29,66 37,07 29,66 37,07 29,66 38,94 31,15	kNm/m kN/m kN/m kNm/m kNm/m kN 12,68 5,53 8,38 18,67 14,94 18,67 14,94 18,67 14,94 13,83 11,06 24,15 16,10 7,66 11,45 23,25 18,60 23,25 18,60 19,16 15,33 32,88 19,79 9,93 14,67 27,71 22,17 27,71 22,17 27,71 22,17 27,71 22,17 27,71 22,17 27,71 22,17 27,71 22,17 27,71 22,17 27,71 25,42 53,02 26,14 15,58 22,56 37,07 29,66 37,07 29,66 37,07 29,66 38,94 31,15 64,26	kNm/m kN/m kN/m kNm/m kNm/m kN/m 12,68 5,53 8,38 18,67 14,94 18,67 14,94 13,83 11,06 24,15 19,32 16,10 7,66 11,45 23,25 18,60 23,25 18,60 23,25 18,60 19,16 15,33 32,88 26,30 19,79 9,93 14,67 27,71 22,17 27,71 22,17 27,71 22,17 24,82 19,86 42,00 33,60 23,38 12,71 18,57 32,54 26,03 32,54 26,03 32,54 26,03 32,54 26,03 31,77 25,42 53,02 42,42 26,14 15,58 22,56 37,07 29,66 37,07 29,66 37,07 29,66 38,94 31,15 64,26 51,41	kNm/m kN/m kNm/m kNm/m kN/m 12,68 5,53 8,38 18,67 14,94 18,67 14,94 18,67 14,94 13,83 11,06 24,15 19,32 35,19 16,10 7,66 11,45 23,25 18,60 23,25 18,60 23,25 18,60 19,16 15,33 32,88 26,30 47,55 19,79 9,93 14,67 27,71 22,17 27,71 22,17 27,71 22,17 24,82 19,86 42,00 33,60 60,36 23,38 12,71 18,57 32,54 26,03 32,54 26,03 32,54 26,03 31,77 25,42 53,02 42,42 75,75 26,14 15,58 22,56 37,07 29,66 37,07 29,66 37,07 29,66 38,94 31,15 64,26 51,41 91,34

Reststützmomente 8)

t _N	I _{a,8} = 10 mm			$I_{a,B} = 60 \text{ mm}$			l _{a.E}	= 160 m	m	Reststützmomente M _{R,Rk}			
	min L	max L m	max M _{R,Rk}	min L	max L	max M _{R,Rk} kNm/m	min L	max L	max M _{R,Rk}				
	m		kNm/m	m	m		m	m	kNm/m				
										M _{R,Rk} = 0 für L≤min L			
										L - min L - mou M			
										$M_{RRk} = \frac{L - \min L}{\max L - \min L} \cdot \max M$			
										M _{R,Rk} = max M _{Rk} für L≥max L			

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	Feldmo-	Ve	rbindung	g in jeden	n anliege	enden Gu	ırt	Verbindung in jedem 2. anliegenden Gurt						
blech- dicke	ment	Endauf- lagerkraft R _{w,Rk,A}	M/V-Interaktion						auf- kraft M/V- Interaktion					
t _N	$\mathbf{M}_{c,\mathrm{Rk},\mathrm{F}}$		M ⁰ _{Rk,B}	M _{c,Rk,B}	$R^0_{Rk,B}$	R _{w,Rk,B}	V _{w,Rk}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	
0,75	14,94	33,88	-	12,68	-	-	33,88	16,94	-	6,34	-	-	16,94	
0,88	18,60	54,59	-	16,10	-	-	54,59	27,30	_	8,05	-	-	27,30	
1,00	22,17	79,53		19,79	-	-	79,53	39,76	-	9,89	-	- 1	39,76	
1,13	26,03	113,43		23,38	_	_	113,43	56,71	-	11,69	-	_	56,71	
1,25	29,66	152,00	_	26,14	-	-	152,00	76,00	-	13,07		1	76,00	
1,50	37,31	227,02	-	31,52	-	-	227,02	113,51	-	15,76		-	113,51	


SAB 158R/750 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

320 N/mm²

Anlage 1.34.1 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

FREISTAAT Bearbeiter: Leiter:

Nennstreckgrenze des Stahlkernes f =

Maßge	bende	Querschnittswerte

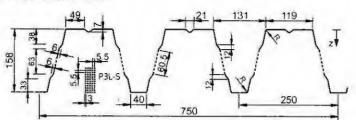
Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norn	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	i+	l' _{eff}	A _g	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	4/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,101	427,0	417,8	11,94	6,00	6,32	5,35	6,71	6,94	7,87	9,80
0,88	0,119	494,0	503,2	14,13	6,00	6,32	7,17	6,67	6,88	9,54	11,90
1,00	0,135	556,0	574,9	16,14	6,00	6,32	9,01	6,64	6,84	10,92	13,65
1,13	0,153	632,0	652,5	18,32	6,00	6,32	11,03	6,60	6,76	12,40	15,50
1,25	0,169	701,0	724,1	20,34	6,00	6,32	12,87	6,55	6,69	13,76	17,20
1,50	0,203	846,0	873,1	24,53	6,00	6,32	17,13	6,44	6,51	16,61	20,75

Schubfeldwerte

	Gr	onzzuetone	der Gebrau	chetoualich	koit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	CHZZUSIANI	uei Gebiau	Cristaugiici	INGIL '						asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K ₂ ^{14) 15)}	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	- b,Ck	1.1	1 2	. 1	1 2	Rk,g	-R	- Rk,I	3		130 mm	280 mm
mm	kN/m	10 ⁻⁴ ·m/kN	10 ⁻⁴ · m ² /kN	10-4-1/kN	10-4 · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ıg: Verbindi	ung in jedem	Untergurt								
0,75	1,39	0,340	83,029	4,667	1,750	13,00	8,00	15,56	0,696	2,14	13,53	18,00
0,88	2,12	0,288	54,535	4,667	1,750	16,72	8,00	25,77	0,757	2,75	16,00	21,29
1,00	2,96	0,252	39,057	4,667	1,750	20,43	8,00	38,46	0,809	3,36	18,29	24,34
1,13	4,07	0,222	28,432	4,667	1,750	24,71	8,00	56,30	0,862	4,06	20,76	27,63
1,25	5,28	0,200	21,898	4,667	1,750	28,89	8,00	75,95	0,908	4,75	23,05	30,67
1,50	8,44	0,165	13,693	4,667	1,750	38,27	8,00	116,8	0,998	6,30	27,81	37,01
Sonderb	efestigur	g: Verbind	ung mit 2 Sci	hrauben od	er verstärkte	r Unterle	egschei	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,32	0,340	57,154	4,667	0,875	13,00	8,00	15,56	1,127	4,79	13,53	18,00
0,88	2,00	0,288	37,540	4,667	0,875	16,72	8,00	25,77	1,127	6,16	16,00	21,29
1,00	2,80	0,252	26,885	4,667	0,875	20,43	8,00	38,46	1,127	7,53	18,29	24,34
1,13	3,84	0,222	19,572	4,667	0,875	24,71	8,00	56,30	1,127	9,11	20,76	27,63
1,25	4,99	0,200	15,074	4,667	0,875	28,89	8,00	75,95	1,127	10,66	23,05	30,67
1,50	7,98	0,165	9,426	4,667	0,875	38,27	8,00	116,8	1,127	14,12	27,81	37,01

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".

SAB 158R/750 P3L-S


Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f

320 N/mm²

Anlage 1.34.2 zum Prüfbescheid

ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T25-122

Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: FREISTAAT Bearbeiter:

SACHSEN

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

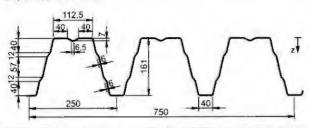
Nenn-	Feldmo-		Endaufla	gerkraft ⁶	3)	Elas	tisch aufi	nehmbar	e Schnitt	tgrößen a	an Zwisc	henaufla	gern 1) 2)	4) 5) 7)
blech- dicke	ment			gondan		Quer-			Qua	dratisch	e Intera	ktion		
dicke						kraft		Stützm	omente		Zw	ischena	uflagerkr	äfte
	40 mm 90 mm 40 mm 90 mi		l _{a,A2} = 90 mm		I _{a,B} = 6	60 mm	l _{a.B} = 10	60 mm	I _{a,B} = 60 mm		I _{a,B} = 160 mm			
t _N	M _{c,Rk,F} R _{T,w,Rk,A} R _{G,w,Rk,A}	v,Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}			
mm	kNm/m				kN/m			n/m				l/m		
0,75	14,31	8,71	9,97	8,71	9,97		13,31	10,26	16,44	12,25	20,87	18,56	24,29	21,75
0,88	19,01	12,56	15,53	12,56	15,53		17,48	14,02	20,46	16,47	30,56	26,80	38,31	33,19
1,00	23,34	16,12	20,66	16,12	20,66		21,34	17,49	24,17	20,36	39,50	34,39	51,28	43,75
1,13	26,50	18,31	23,46	18,31	23,46	n.m.	24,22	19,85	27,44	23,11	44,83	39,05	58,20	49,68
1,25	29,41	20,32	26,04	20,32	26,04		26,89	22,04	30,46	25,66	49,78	43,35	64,63	55,15
1,50	35,49	24,52	31,42	24,52	31,42		32,45	26,59	36,75	30.96	60.10	52,31	77.96	66,54

Reststützmomente 8)

	l _{a,i}	= 60 mm		l _{a,E}	=160 mm		Reststützmomente M _{R.Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	
0,75	7,94	8,62	2,36	7,94	8,62	2,36	M _{R,Rk} = 0 für L≤min L
0,88	7,54	8,23	3,30	7,41	8,09	3,36	
1,00	7,33	8,02	4,17	7,13	7,82	4,29	$M_{R,Rk} = \frac{L - min L}{max L min L} \cdot max M_{R,Rk}$
1,13	7,33	8,02	4,74	7,13	7,82	4,87	$M_{R,Rk} = \frac{L - M_{R,Rk}}{\text{max L} - \text{min L}} \cdot \text{max M}_{R,Rk}$
1,25	7,33	8,02	5,26	7,13	7,82	5,41	
1,50	7,33	8,02	6,34	7,13	7,82	6,52	M _{R.Rk} = max M _{R.k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

	Feldmo-	Ve	erbindung	g in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ Rk,B	M _{c,Rk,B}	$R^0_{Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R° Rk,B	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	12,09	16,78	-	14,53	-	-	16,78	8,39	-	7,27	-	-	8,39
0,88	15,63	27,04	-	18,11	-	-	27,04	13,52	-	9,06	-	-	13,52
1,00	18,89	39,55	-	21,58	-	-	39,55	19,78	_	10,79	-	- 1	19,78
1,13	21,93	56,59	-	25,32	-	-	56,59	28,30	-	12,66	-	-	28,30
1,25	24,54	75,95	-	28,81	-	-	75,95	37,98	_	14,40	-	-	37,98
1,50	29,59	129,16	-	36,13	- 1	-	129,16	64,58	-	18,07	-	-	64,58


SAB 160R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f_{vk} =

320 N/mm²

Anlage 1.35.1 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: FREISTAAT Bearbeiter: SACHSEN

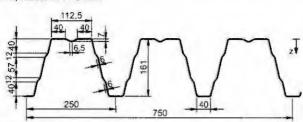
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)	
blech- dicke				nicht redu:	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger	
t _N	g	I* eff	I-	A _g	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}	
mm	kN/m²	cm ^e	¹/m	cm²/m	Cr	n	cm²/m	cr	n		m	
0,75	0,120	461,6	445,9	13,92	5,71	6,83	5,87	6,53	7,22	9,83	12,29	
0,88	0,141	559,0	536,4	16,47	5,71	6,83	7,88	6,48	7,21	11,63	14,54	
1,00	0,160	638,6	612,9	18,82	5,71	6,83	9,90	6,44	7,21	13,29	16,61	
1,13	0,181	724,9	695,7	21,36	5,71	6,83	12,25	6,39	7,21	15,09	18,86	
1,25	0,200	804,4	772,1	23,71	5,71	6,83	14,45	6,34	7,19	16,75	20,94	
1,50	0,240	969,9	931,0	28,60	5,71	6,83	18,63	6,24	7,13	20,21	25,27	

Schubfeldwerte

	0.		der Gebrau	obetovaliek	skoje 17)		(renzzust	tand der	Tragfähi	gkeit 18)	
	G	enzzustand	dei Gebiau	icristaugiici	IKUL '					l	asteinleitu	ing
t _N	т	K, 14) 15)	K, 14) 15)	K* 15)	K*, 15}	T 16)	L _R 16)	T _{Rk,i}	K ₃ ¹⁹⁾	T _{I,Rk} 22)	F _{t,Rk} 21)	für a ≥
	T _{b,Ck}	1,71	1 2	13 1	1 2	T _{Rk,g} 16)	-R	* Rk,i	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10⁴ ·1/kN	10-4 ·m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normall	pefestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	1,928	0,341	63,137	4,667	1,750	13,63	8,00	14,87	0,743	2,66	12,17	16,20
0,88	2,935	0,288	41,470	4,667	1,750	17,54	8,00	24,62	0,808	3,43	14,40	19,16
1,00	4,099	0,252	29,700	4,667	1,750	21,42	8,00	36,75	0,863	4,18	16,46	21,90
1,13	5,630	0,222	21,620	4,667	1,750	25,91	8,00	53,79	0,920	5,06	18,69	24,87
1,25	7,310	0,200	16,652	4,667	1,750	30,30	8,00	73,58	0,969	5,92	20,75	27,61
1,50	11,691	0,166	10,412	4,667	1,750	40,14	8,00	116,80	1,065	7,85	25,03	33,31
Sonder	oefestigur	ng: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,836	0,341	39,454	4,667	0,875	13,63	8,00	14,87	1,193	6,37	12,17	16,20
0,88	2,796	0,288	25,914	4,667	0,875	17,54	8,00	24,62	1,193	8,20	14,40	19,16
1,00	3,904	0,252	18,559	4,667	0,875	21,42	8,00	36,75	1,193	10,02	16,46	21,90
1,13	5,363	0,222	13,510	4.667	0,875	25,91	8,00	53,79	1,193	12,12	18,69	24,87
1,25	6,963	0,200	10,406	4,667	0,875	30,30	8,00	73,58	1,193	14,18	20,75	27,61
1,50	11,135	0,166	6,507	4,667	0,875	40,14	8,00	116,80	1,193	18,79	25,03	33,31

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße". (Klasse 1 nach DIN EN 508-1:2014)


SAB 160R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Landesstelle für Bautechnik Leipzig, den 05.08.2025 FREISTAAT Bearbeiter:

Anlage 1.35.2 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

SACHSEN

Nennstreckgrenze des Stahlkernes f, = 320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				E	Elastis	ch aufr	rehmb	are Sc	hnittgrö	ßen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)		
blech-	ment	End		Quer-						Line	are Inte	eraktion					
dicke		lager	trail "	kraft		5	Stützm	oment	е			Zwischenauflagerk				äfte	
		_{a1} = 40 mm	l _{a2} = 90 mm		I _{a,B} = 1	0 mm	I _{a.8} = 6	0 mm	_{a,B} = 1	60 mm	I _{a,B} = 1	0 mm	I _{a 8} = 6	0 mm	I _{a.B} = 16	60 mm	
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	Rº RK,B	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	
mm	kNm/m	kN		kN/m		•	kNr	n/m					kN	l/m			
0,75	19,59	16,73	18,63		-	-	13,53	9,00	19,29	12,25	-	-	35,01	19,30	47,47	32,17	
0,88	25,53	24,51	27,23		-	-	21,85	12,79	25,54	17,30	-	-	40,12	27,85	70,12	45,37	
1,00	31,02	31,68	35,18		-	-	29,52	16,29	31,30	21,96	-	-	44,84	35,75	91,03	57,55	
1,13	36,33	42,41	47,01	n.m.	-	-	35,77	21,16	35,47	26,66	-	-	59,83	46,39	127,47	73,66	
1,25	41,23	52,32	57,94		-	-	41,54	25,66	39,32	31,00		-	73,66	56,22	161,10	88,54	
1,50	49,74	63,13	69,91		-	-	50,12	30,96	47,45	37,41	_	-	88,88	67,84	194,38	106,83	

Reststützmomente 8)

omente M _{R,Rk}
für L≤min L
nin L
nin L - min L - min L
für L≥max L
•

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-	Feldmo-	Ve	erbindung	g in jeden	n anliege	enden Gı	irt	Ver	bindung	in jedem	2. anlie	genden G	Burt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	13,31	33,11	-	15,08	-	-	33,11	16,55	-	7,54	-	-	16,55
0,88	17,15	53,38	L	19,31	-	-	53,38	26,69	-	9,66		-	26,69
1,00	20,58	78,08	-	23,22	-	-	78,08	39,04	-	11,61	-	-	39,04
1,13	23,83	111,80	-	27,30	-	-	111,80	55,90	-	13,65	-	-	55,90
1,25	26,65	149,81	-	30,97	-	-	149,81	74,91	-	15,48	-	-	74,91
1,50	32,14	227,63	-	38,21	-	-	227,63	113,82	-	19,11	-	-	113,82

SAB 160R/750

Anlage 1.35.3 zum Prüfbescheid ALS TYPENENTWURF

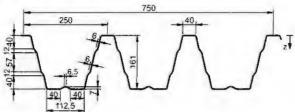
in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

FREISTAAT

Bearbeiter:


Leiter:

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

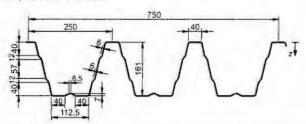
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	1-	A _g	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	Lgr	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,120	445,9	461,6	13,92	5,71	9,27	5,87	6,53	8,88	1	
0,88	0,141	536,4	559,0	16,47	5,71	9,27	7,88	6,48	8,89		1 /
1,00	0,160	612,9	638,6	18,82	5,71	9,27	9,90	6,44	8,89	1	//
1,13	0,181	695,7	724,9	21,36	5,71	9,27	12,25	6,39	8,89		
1,25	0,200	772,1	804,4	23,71	5,71	9,27	14,45	6,34	8,91		
1,50	0,240	931.0	969.9	28.60	5,71	9,27	18.63	6,24	8,97		

Schubfeldwerte

	G	onzzuetone	d der Gebrau	chetavaliek	koit 17)		(Grenzzus	tand der	Tragfähi	gkeit 18)	
	Gi	CHZZUSIANI	i dei Gebiau	ichstauglici	INCIL						_asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K* 15)	T _{Rk.g} 16)	L _R 16)	T _{Rk,i}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck		2	7.1	2	'Rk.g	-R	Rk,i	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m ² /kN	10⁴ ·1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	1,608	0,341	94,471	4,667	1,750	13,63	8,00	14,87	0,385	3,61	18,88	18,88
0,88	2,448	0,288	62,051	4,667	1,750	17,54	8,00	24,62	0,418	4,64	22,34	22,34
1,00	3,419	0,252	44,439	4,667	1,750	21,42	8,00	36,75	0,447	5,67	25,53	25,53
1,13	4,696	0,222	32,350	4,667	1,750	25,91	8,00	53,79	0,477	6,86	28,99	28,99
1,25	6,097	0,200	24,916	4,667	1,750	30,30	8,00	73,58	0,502	8,02	32,18	32,18
1,50	9,751	0,166	15,580	4,667	1,750	40,14	8,00	116,80	0,552	10,63	38,83	38,83
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	9,34	0,341	2,757	4,667	0,875	13,63	8,00	14,87	1,506	16,50	18,88	18,88
0,88	14,22	0,288	1,811	4,667	0,875	17,54	8,00	24,62	1,506	21,23	22,34	22,34
1,00	19,86	0,252	1,297	4,667	0,875	21,42	8,00	36,75	1,506	25,94	25,53	25,53
1,13	27,28	0,222	0,944	4,667	0,875	25,91	8,00	53,79	1,506	31,39	28,99	28,99
1,25	35,42	0,200	0,727	4,667	0,875	30,30	8,00	73,58	1,506	36,71	32,18	32,18
1,50	56,65	0,166	0,455	4,667	0,875	40,14	8,00	116,80	1,506	48,66	38,83	38,83

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße". (Klasse 1 nach DIN EN 508-1:2014)


SAB 160R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Anlage 1.35.4 zum Prüfbescheid

Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

BACHSEN

Nennstreckgrenze des Stahlkernes f_{y,k} = 320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

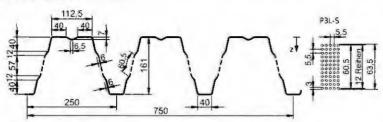
Nenn-	Feldmo-				1	Elastis	ch aufr	nehmb	are So	hnittgr	ößen an	Zwische	enauflage	rn 1) 2) 4)	5) 7)	
blech-	ment	End	auf-	Quer-						Line	eare Inte	eraktion				
dicke		lagen	kraft 6)	kraft		5	Stützm	oment	е		1	Zw	ischenau	ıflagerkr	äfte	
	t _N M _{c,Rk,F}	l _{a1} = 10 mm	l _{a2} = 40 mm		= 1	I0 mm	I _{a,B} = 6	60 mm	I _{a,B} = 1	60 mm	I _{a B} = 1	0 mm	I _{aB} = 6	0 mm	I _{a B} = 16	60 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	$V_{w,Rk}$	Mº Rk,B	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	/m	kN/m			kNr	n/m					kN	/m		
0,75	13,31	5,64	8,55		18,85	15,08	18,85	15,08	18,85	15,08	14,10	11,28	24,63	19,70	35,89	28,71
0,88	17,15	8,02	11,99		24,14	19,31	24,14	19,31	24,14	19,31	20,06	16,05	34,42	27,54	49,78	39,82
1,00	20,58	10,67	15,76		29,03	23,22	29,03	23,22	29,03	23,22	26,67	21,34	45,12	36,10	64,86	51,89
1,13	23,83	14,07	20,57	n.m.	34,12	27,30	34,12	27,30	34,12	27,30	35,18	28,15	58,71	46,97	83,88	67,11
1,25	26,65	17,77	25,73		38,71	30,97	38,71	30,97	38,71	30,97	44,42	35,53	73,29	58,63	104,17	83,34
1,50	32,14	27,43	39,10		47,76	38,21	47,76	38,21	47,76	38,21	68,58	54,86	110,86	88,69	156,10	124,88

Reststützmomente 8)

	l _{a.t}	_B = 10 m	m	l _{a,t}	= 60 m	m	l _{a,i}	= 160 m	m	Reststützmomente M _{R.Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R.Rk} = 0 für L≤min L
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
										M _{R,Rk} = max M _{R,Rk} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Feldmo-	VC	numaung	g in jeder	n anlieg	enden Gu	urt	Ver	bindung	in jedem	2. anlie	genden (3urt
ment	Endauf- lagerkraft		M/\	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
M _{c,Rk,F}	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° Rk,B	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° RK,B	R _{w,Rk,B}	$V_{w,Rk}$
kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
15,08	33,11	-	13,31	-	-	33,11	16,55	-	6,66	-	-	16,55
19,31	53,38	-	17,15	-	-	53,38	26,69	-	8,57		- 1	26,69
23,22	78,08	-	20,58	-	-	78,08	39,04	-	10,29	-	-	39,04
27,30	111,80	-	23,83	-	-	111,80	55,90	-<	11,91	-	-	55,90
30,97	149,81	-	26,65		2-1	149,81	74,91	-	13,33	2	_	74,91
38,21	227,63	-	32,14	-	-	227,63	113,82	-	16,07	1	_	113,82
-	M _{c,Rk,F} kNm/m 15,08 19,31 23,22 27,30 30,97	Endaut- lagerkraft M _{c,Rk,F} R _{w,Rk,A} kNm/m kN/m 15,08 33,11 19,31 53,38 23,22 78,08 27,30 111,80 30,97 149,81	Rw,Rk,A M° Rk,B Rw,Rk,A M° Rk,B Rw,Rk,A Rw,Rk,A Rw,Rk,B Rw,R	MAX MAX Mc,Rk,F R,w,Rk,A M°Rk,B Mc,Rk,B kNm/m kN/m kNm/m kNm/m 15,08 33,11 - 13,31 19,31 53,38 - 17,15 23,22 78,08 - 20,58 27,30 111,80 - 23,83 30,97 149,81 - 26,65	Endauflagerkraft M/V- Intera M _{c,Rk,F} R _{w,Rk,A} M° _{Rk,B} M _{c,Rk,B} R° _{Rk,B} kNm/m kN/m kNm/m kNm/m kN/m 15,08 33,11 - 13,31 - 19,31 53,38 - 17,15 - 23,22 78,08 - 20,58 - 27,30 111,80 - 23,83 - 30,97 149,81 - 26,65 -	Moore Moor	Endauflagerkraft M/V-Interaktion M _{c,Rk,F} R _{w,Rk,A} M° _{Rk,B} M _{c,Rk,B} R° _{Rk,B} R _{w,Rk,B} V _{w,Rk} kNm/m kN/m kNm/m kN/m kN/m kN/m kN/m 15,08 33,11 - 13,31 - - 33,11 19,31 53,38 - 17,15 - - 53,38 23,22 78,08 - 20,58 - - 78,08 27,30 111,80 - 23,83 - - 111,80 30,97 149,81 - 26,65 - - 149,81	Moderate	Endauf- lagerkraft M/V- Interaktion Endauf- lagerkraft M _{c,Rk,F} R _{w,Rk,A} M° _{Rk,B} M° _{c,Rk,B} R° _{k,Rk,B} V _{w,Rk} R _{w,Rk,A} M° _{Rk,B} kNm/m kN/m kNm/m kN/m kN/m kN/m kNm/m 15,08 33,11 - 13,31 - - 33,11 16,55 - 19,31 53,38 - 17,15 - - 53,38 26,69 - 23,22 78,08 - 20,58 - - 78,08 39,04 - 27,30 111,80 - 23,83 - - 111,80 55,90 - 30,97 149,81 - 26,65 - - 149,81 74,91 -	Endauflagerkraft M/V-Interaktion Endauflagerkraft M/N M _{c,Rk,F} R _{w,Rk,A} M° _{Rk,B} M _{c,Rk,B} R° _{Rk,B} R _{w,Rk,B} V _{w,Rk} R _{w,Rk,A} M° _{Rk,B} M _{c,Rk,B} kNm/m kN/m kN/m kN/m kN/m kN/m kNm/m kNm/m	Endauf- Iagerkraft	Mark Mark


SAB 160R/750 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f_{y,k} =

320 N/mm²

Landesdirektion Sachsen Landesstelle für Bautechnik Leipzig, den 05.08.2025

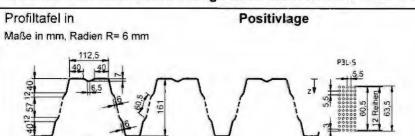
Leiter: Bearbeiter:

Anlage 1.36.1 zum Prüfbescheid
ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten ¹³⁾
blech- dicke a)				nicht redu:	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	J ⁺ eff	I- eff	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	CI	n		m
0,75	0,118	454,9	437,8	12,14	6,06	6,65	5,40	6,79	7,13	9,83	12,29
0,88	0,138	550,6	527,2	14,37	6,06	6,65	7,23	6,75	7,12	11,63	14,54
1,00	0,157	629,0	602,3	16,41	6,06	6,65	9,06	6,72	7,11	13,29	16,61
1,13	0,178	713,9	683,7	18,63	6,06	6,65	11,17	6,68	7,11	15,09	18,86
1,25	0,197	792,2	758,7	20,68	6,06	6,65	13,15	6,63	7,09	16,75	20,94
1,50	0,236	955,2	914,9	24,95	6,06	6,65	16,86	6,54	7,03	20,21	25,27
						1					


Schubfeldwerte

	Gr	enzzuetano	d der Gebrau	chetaualick	kesit 17)		(Grenzzus	tand der	Tragfähi	gkeit 18)	
	0,	GIIZZUStario	dei Oebiac	icristaugiici	INGIL					L	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,i}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	1.4	' '2	** 1	1 2	Rk,g	-R	Rk,I	* *3		130 mm	280 mm
mm	kN/m	10 ⁻⁴ ·m/kN	10 ⁻⁴ ·m ² /kN	10⁴·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ıg: Verbindi	ung in jedem	Untergurt								
0,75	1,608	0,341	75,711	4,667	1,750	13,45	8,00	14,87	0,743	2,22	12,17	16,20
0,88	2,448	0,288	49,729	4,667	1,750	17,31	8,00	24,62	0,808	2,86	14,40	19,16
1,00	3,418	0,252	35,615	4,667	1,750	21,14	8,00	36,75	0,863	3,49	16,46	21,90
1,13	4,695	0,222	25,926	4,667	1,750	25,57	8,00	53,79	0,920	4,22	18,69	24,87
1,25	6,096	0,200	19,968	4,667	1,750	29,90	8,00	73,58	0,969	4,94	20,75	27,61
1,50	9,749	0,166	12,486	4,667	1,750	39,62	8,00	116,80	1,065	6,55	25,03	33,31
Sonderb	efestigur	g: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,531	0,341	47,312	4,667	0,875	13,45	8,00	14,87	1,193	5,31	12,17	16,20
0,88	2,331	0,288	31,075	4,667	0,875	17,31	8,00	24,62	1,193	6,84	14,40	19,16
1,00	3,255	0,252	22,255	4,667	0,875	21,14	8,00	36,75	1,193	8,36	16,46	21,90
1,13	4,472	0,222	16,201	4,667	0,875	25,57	8,00	53,79	1,193	10,11	18,69	24,87
1,25	5,806	0,200	12,478	4,667	0,875	29,90	8,00	73,58	1,193	11,82	20,75	27,61
1,50	9,286	0,166	7,802	4,667	0,875	39,62	8,00	116,80	1,193	15,67	25,03	33,31

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße". (Klasse 1 nach DIN EN 508-1:2014)

SAB 160R/750 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1.36.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

1.

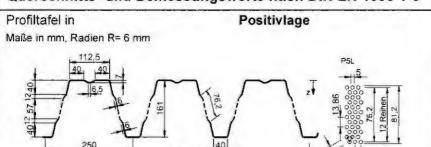
Nennstreckgrenze des Stahlkernes f, =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				1	Elastis	ch aufr	nehmb	are Sc	hnittgr	ißen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	End	auf-	Quer-						Line	are Inte	eraktion				
dicke		lagen	kraft ⁶⁾	kraft		5	Stützm	oment	е			Zw	ischenau	ıflagerkr	äfte	
	t _N M _{c,Rk,F} R _{w,Rl}	l _{a2} = 90 mm		I _{a,B} = 1	10 mm	I _{a,B} == 6	60 mm	 	60 mm	I _{a.9} = 1	0 mm	I _{a 8} = 6	60 mm	I _{a,B} = 16	60 mm	
t _N	M _{c,Rk,F}	R	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	Mº RK,B	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN		kN/m		Rk,B ****c,Rk,B		n/m					kN	l/m		
0,75	18,93	11,50	12,78	16,56	-	-	16,38	8,11	17,29	10,87	-	-	21,95	17,78	41,43	28,00
0,88	24,68	17,22	19,37	26,68	-	-	19,95	11,57	22,67	15,38	-	-	34,55	26,36	62,07	40,02
1,00	30,00	22,50	25,44	39,03	-	-	23,24	14,77	27,64	19,54	-	-	46,18	34,27	81,13	51,11
1,13	35,17	29,39	33,07	55,94	-	-	29,27	19,35	33,39	24,46	-	-	60,58	45,30	104,95	64,39
1,25	39,95	35,75	40,11	75,11	-	-	34,84	23,58	38,70	28,99	-	-	73,88	55,47	126,94	76,65
1,50	48,20	43,14	48,39	127,83	-	-	42,04	28,45	46,70	34,98	_	-	89,14	66,94	153,16	92,48

Reststützmomente 8)


	l _{a,l}	= 10 m	ım	l _{a,5}	= 60 m	m	l _{a,E}	= 160 m	ım	Reststützmomente M _{R,Rk}
I _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min I
										M - L - min L . may h
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M$
										M _{R,Rk} = max M _{R,Rk} für L≥ max

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-		Ve	erbindung	g in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ^o _{Rk,B}	M _{c,Rk,B}	$R^0_{Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	12,66	16,56	-	15,01	-	-	16,56	8,28	-	7,51	-	-	8,28
0,88	16,38	26,68	-	19,25	-	-	26,68	13,34	-	9,63	4	4	13,34
1,00	19,79	39,03	~	23,15	-	-	39,03	19,51	-	11,57	-	-	19,51
1,13	22,96	55,94	-	27,19	-	-	55,94	27,97		13,60	-	-	27,97
1,25	25,70	75,11	-	30,83	-	-	75,11	37,55	-	15,41	-	- 1	37,55
1,50	30,99	127,83	-	37,98	-	_	127,83	63,92	_	18,99	-	-	63,92

SAB 160R/750 P5L

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1.37.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Nennstreckgrenze des Stahlkernes f, =

320 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	i+ eff	l- eff	Ag	ig	Zg	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm ²	4/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,106	419,0	420,1	10,71	6,32	6,47	5,09	6,98	7,01	1	
0,88	0,124	506,9	506,9	12,67	6,32	6,47	6,82	6,94	7,00	,	1
1,00	0,141	579,1	579,1	14,48	6,32	6,47	8,55	6,90	6,99		- Y
1,13	0,160	657,4	657,4	16,44	6,32	6,47	10,55	6,86	6,99		1.7
1,25	0,176	729,5	729,5	18,25	6,32	6,47	12,41	6,82	6,96		
1,50	0,212	879,7	879,7	22,01	6,32	6,47	16,27	6,70	6,83		

Schubfeldwerte

	G	onzzuctona	d der Gebrau	chetaualiel	akait 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	CHZZUSIANI	dei Gebiat	ici istaugiici	IKEIL .					ı	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K* 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	, p'Ck	7.1	1 12	1, 1	., 5	'Rk,g	-R	`Rk,I	**3		130 mm	280 mn
mm	kN/m	10⁴.m/kN	10 ⁻⁴ ·m ² /kN	10⁴ ·1/kN	10⁴·m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ıg: Verbindi	ung in jedem	Untergurt								
0,75	1,445	0,341	84,216	4,667	1,750	13,06	8,00	11,99	0,743	2,00	12,17	16,20
0,88	2,201	0,288	55,315	4,667	1,750	16,81	8,00	19,42	0,808	2,57	14,40	19,16
1,00	3,073	0,252	39,615	4,667	1,750	20,53	8,00	28,49	0,863	3,14	16,46	21,90
1,13	4,221	0,222	28,839	4,667	1,750	24,83	8,00	40,98	0,920	3,80	18,69	24,87
1,25	5,480	0,200	22,212	4,667	1,750	29,04	8,00	55,21	0,969	4,44	20,75	27,61
1,50	8,764	0,166	13,889	4,667	1,750	38,47	8,00	94,48	1,065	5,88	25,03	33,31
Sonderb	efestigur	g: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,377	0,341	52,627	4,667	0,875	13,06	8,00	11,99	1,193	4,78	12,17	16,20
0,88	2,096	0,288	34,566	4,667	0,875	16,81	8,00	19,42	1,193	6,15	14,40	19,16
1,00	2,927	0,252	24,756	4,667	0,875	20,53	8,00	28,49	1,193	7,51	16,46	21,90
1,13	4,020	0,222	18,021	4,667	0,875	24,83	8,00	40,98	1,193	9,09	18,69	24,87
1,25	5,220	0,200	13,880	4,667	0,875	29,04	8,00	55,21	1,193	10,63	20,75	27,61
1,50	8,348	0,166	8,679	4,667	0,875	38,47	8,00	94,48	1,193	14,09	25,03	33,31

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße". (Klasse 1 nach DIN EN 508-1:2014)

SAB 160R/750 P5L

Anlage 1.37.2 zum Prüfbescheid

ALS TYPENENTWURF

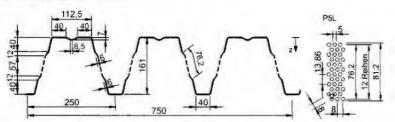
in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

FREISTAAT

Leiter:


Bearbeiter:

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes $f_{y,k}$ =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

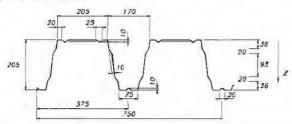
Nenn-	Feldmo-				E	Elastis	ch aufr	nehmb	are So	hnittgr	ößen an	Zwische	nauflage	ern ^{1) 2) 4)}	5) 7)	
blech-	ment	End		Quer-						Line	eare Inte	eraktion				
dicke		lagen	kraft ⁶⁾	kraft			Stützm	oment	e			Zw	ischena	uflagerkr	äfte	
	t _N M _{c,Rk,F}	l _{a1} = 10 mm	l _{a2} = 40 mm		I _{a.B} = 1	0 mm	I _{a.B} = 6	60 mm	l _{a,8} = 1	60 mm	I _{a,B} = 1	0 mm	f _{a,0} = 6	60 mm	I _{a,B} = 16	30 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ Rk,B	M _{c,Rk,B}	M ⁰ _{RIGB}	M _{c,Rk,8}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN		kN/m			kNr	n/m					k٨	l/m		
0,75	14,77	5,55	8,41	11,99	15,15	12,12	15,15	12,12	15,15	12,12	13,87	11,10	24,22	19,38	32,73	26,19
0,88	18,84	7,69	11,49	19,42	19,76	15,80	19,76	15,80	19,76	15,80	19,22	15,38	32,99	26,39	43,86	35,09
1,00	22,55	9,95	14,70	28,49	23,26	18,61	23,26	18,61	23,26	18,61	24,88	19,90	42,09	33,67	55,30	44,24
1,13	26,34	12,71	18,57	40,98	27,04	21,63	27,04	21,63	27,04	21,63	31,77	25,42	53,02	42,42	68,89	55,11
1,25	29,71	15,53	22,50	55,21	30,29	24,23	30,29	24,23	30,29	24,23	38,83	31,06	64,07	51,26	82,51	66,01
1,50	36,39	22,26	31,73	94,48	36,52	29,22	36,52	29,22	36,52	29,22	55,65	44,52	89,97	71,97	114,07	91,26
										1						

Reststützmomente 8)

l _{a,t}	s = 10 m	m	l _{a,t}	e = 60 m	m	l _{a,E}	= 160 m	im	Reststützmomente M _{R.Rk}
min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
									M _{R,Rk} = 0 für L≤min L
									$M_{R,Rk} = \frac{L - \min L}{\max M_{R}}$
									max L – min L
									M _{R Rk} = max M _{R,Rk} für L≥ max L
	min L	min L max L		min L max L max M _{R,Rk} min L	min L max L max M _{R,Rk} min L max L	min L max L max M _{R,Rk} min L max L max M _{R,Rk}	min L max L max M _{R,Rk} min L max L max M _{R,Rk} min L	min L max L max M _{R,Rk} min L max L max M _{R,Rk} min L max L	min L max L max M _{R,Rk} min L max L max M _{R,Rk} min L max L max M _{R,Rk}

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Endauf- lagerkraft R _{w,Rk,A} kN/m	M ⁰ _{Rk,B}	M/\ M _{c,Rk,B} kNm/m	/- Intera	R _{w,Rk,B}		Endauf- lagerkraft R _{w,Rk,A}	M ⁰ _{RK,B}	M/V	/- Intera	ktion R _{w,Rk,B}	V _{w,Rk}
kN/m						R _{w,Rk,A}	M ⁰ RK,B	M _{c,Rk,B}	Rº RKB	R	V
	kNm/m	kNm/m							- 111,0	H,NK,D	W,KK
11 00			200	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
11,99	-	14,77	-	-	11,99	6,00	1-	7,39	-	1-01	6,00
19,42	-	18,84	-	-	19,42	9,71	-	9,42	-	-	9,71
28,49	-	22,55	-	-	28,49	14,25	2	11,27	-	-	14,25
40,98		26,34	-	-	40,98	20,49		13,17	-	-	20,49
55,21	-	29,71	-	- 1	55,21	27,61	_	14,86	-	-	27,61
94,48	-	36,39	-	- 1	94,48	47,24	-	18,19	-	-	47,24
	40,98 55,21	40,98 - 55,21 -	40,98 - 26,34 55,21 - 29,71	40,98 - 26,34 - 55,21 - 29,71 -	40,98 - 26,34 55,21 - 29,71	40,98 - 26,34 40,98 55,21 - 29,71 - 55,21	40,98 - 26,34 - - 40,98 20,49 55,21 - 29,71 - - 55,21 27,61	40,98 - 26,34 40,98 20,49 - 55,21 - 29,71 55,21 27,61 -	40,98 - 26,34 - - 40,98 20,49 - 13,17 55,21 - 29,71 - - 55,21 27,61 - 14,86	40,98 - 26,34 40,98 20,49 - 13,17 - 55,21 - 29,71 - 55,21 27,61 - 14,86 -	40,98 - 26,34 - - 40,98 20,49 - 13,17 - - 55,21 - 29,71 - - 55,21 27,61 - 14,86 - -


SAB 200R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f, = Maßgebende Querschnittswerte

320 N/mm²

ALS TYPENENTWURF in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik Leipzig, den 05.08.2025 Leiter: Bearbeiter: FREISTAAT CHSEN

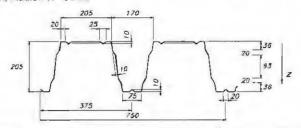
Anlage 1.38.1 zum Prüfbescheid

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I+ eff	1- _{eff}	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,120	772	799	13,72	7,65	8,36	4,84	8,54	9,52	9,40	11,75
0,88	0,141	901	951	16,23	7,65	8,36	6,39	8,46	9,51	11,12	13,90
1,00	0,160	1019	1087	18,55	7,65	8,35	7,93	8,38	9,44	12,71	15,85
1,13	0,181	1211	1233	21,06	7,65	8,35	9,72	8,30	9,36	14,43	18,00
1,25	0,200	1389	1369	23,38	7,65	8,35	11,40	8,23	9,29	16,02	20,00
1,50	0,240	1676	1651	28,20	7,65	8,35	16,05	8,08	9,10	19,33	24,15

Schubfeldwerte

	G	ranzzustand	d der Gebrau	chetaualich	keit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
4	G	CHZZUSIAN	dei Gebiat	cristaughci	INGIL						asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K ₂ ^{14) 15)}	K*, 15)	K* 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,i}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	füra≥
	b,Ck	111	2	13.1	2	Rk,g	-R	- Rk,j	3		130 mm	280 mn
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10-4 - 1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	0,80	0,326	200,899	4,667	2,625	21,18	8,00	9,50	0,433	2,09	/	
0,88	1,22	0,275	131,955	4,667	2,625	27,25	8,00	15,73	0,471	2,69		
1,00	1,71	0,241	94,503	4,667	2,625	33,28	8,00	23,48	0,503	3,28		
1,13	2,35	0,212	68,795	4,667	2,625	40,26	8,00	34,37	0,536	3,97		1.7
1,25	3,05	0,191	52,986	4,667	2,625	47,08	8,00	47,02	0,565	4,64		
1,50	4,87	0,158	33,132	4,667	2,625	62,38	8,00	82,60	0,621	6,16	, [*]	/
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾	/	
0,75	0,74	0,326	151,773	4,667	1,313	21,18	8,00	9,50	0,875	4,51	1	
0,88	1,12	0,275	99,688	4,667	1,313	27,25	8,00	15,73	0,875	5,80		
1,00	1,57	0,241	71,394	4,667	1,313	33,28	8,00	23,48	0,875	7,09	1	
1,13	2,16	0,212	51,972	4,667	1,313	40,26	8,00	34,37	0,875	8,58		
1,25	2,80	0,191	40,029	4,667	1,313	47,08	8,00	47,02	0,875	10,03		
1,50	4,48	0,158	25,030	4,667	1,313	62,38	8,00	82,60	0,875	13,30		

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 200R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f_{vk} =

320 N/mm²

Anlage 1.38.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

eiter: FREISTAAT Bearbeiter:

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-	,	Endaufla	oerkraft ⁶	5)	Elast	tisch aufr	nehmbar	e Schnitt	tgrößen a	an Zwisc	henaufla	gern 1) 2)	4) 5) 7)
blech-	ment			gennan		Quer-			Qua	dratisch	e Interal	ktion		
dicke						kraft		Stützm	omente		Zw	ischenau	ıflagerkr	äfte
		l _{a,A1} = 40 mm	I _{a A2} = 90 mm	I _{a,A1} = 40 mm	I _{a.A2} = 90 mm		I _{a B} = 6	0 mm	l _{a,B} = 20	00 mm	I _{a B} = 6	0 mm	I _{a 8} = 20	00 mm
t _N	M _{c,Rk,F}	R _{T,w}	v,Rk,A	R _{G,v}	v,Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		kN			kN/m		kNr	n/m			kN	/m	
0,75	18,86	7,64	/	7,64	kN/m		12,81	8,55	23,49	11,93	16,95	13,90	20,97	18,34
0,88	24,16	11,00	f	11,00	1		18,29	12,51	29,12	16,59	24,71	20,19	29,14	25,05
1,00	29,06	14,07		14,07	1		23,36	16,17	34,32	20,90	31,88	25,99	36,67	31,25
1,13	32,78	19,05	1	19,05	1	n.m.	29,03	21,15	43,16	27,74	41,72	33,65	47,77	40,47
1,25	36,22	23,47	/	23,47	1		34,27	25,74	51,32	34,05	50,80	40,72	58,02	48,99
1,50	43,70	28,31	/	28,31	/		41,36	31,06	61,92	41,09	61,30	49,14	70,01	59,11

Reststützmomente 8)

	l _{a,}	= 60 mm		l _{a,E}	=200mm		Reststütz	zmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}		
mm	m	m	kNm/m	m	m	kNm/m		
0,75	15,33	16,70	3,04	14,03	15,41	3,32	$M_{R,Rk} = 0$	für L≤min L
0,88	14,72	16,10	4,09	13,18	14,57	4,61		
1,00	14,15	15,54	5,07	12,39	13,80	5,80	M = L-	min L · max M _{R,Rk}
1,13	12,79	14,20	6,47	11,14	12,57	7,45	$M_{R,Rk} = \frac{L}{\text{max L}}$	- min L
1,25	11,54	12,96	7,77	9,98	11,44	8,98		
1,50	11,54	12,96	9,37	9,98	11,44	10,84	$M_{R,Rk} = \max M$	_{R,k} für L≥max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	Feldmo-	Ve	rbindung	j in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	$R^{\scriptscriptstyle 0}_{_{Rk,B}}$	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{RK,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	18,35	20,41	-	18,49	-	-	20,41	10,21	-	9,24	-	-	10,21
0,88	22,58	32,70	-	23,25	-	-	32,70	16,35	-	11,63	_	-	16,35
1,00	26,42	47,40	-	27,58	-	-	47,40	23,70	-	13,79	-	-	23,70
1,13	30,56	67,26	121	32,38	-	-	67,26	33,63	_	16,19	-	= -	33,63
1,25	34,26	89,77		36,93	-	-	89,77	44,89	-	18,47	-	-	44,89
1,50	42,00	151,13	-	46,74	-		151,13	75,56	-	23,37	-	-	75,56

SAB 200R/750

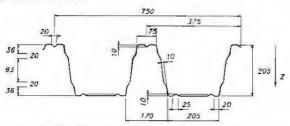
Anlage 1.38.3 zum Prüfbescheid
ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Bearbeiter:


Leiter:

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f_{v.k} =

320 N/mm²

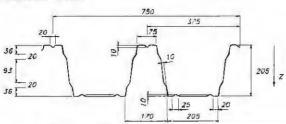
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	malkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt 12)	Einfeld- träger	Mehrfeld- träger
t _N	g	I+ eff	- eff	A _g	i _g	Z _g	A _{eff}	i _{eff}	Zeff	Lgr	Lgr
mm	kN/m²	cm	⁴/m	cm²/m	Cr	n	cm²/m	Ct	n		m
0,75	0,120	799	772	13,72	7,65	12,14	4,84	8,54	10,98	9,40	11,75
88,0	0,141	951	901	16,23	7,65	12,14	6,39	8,46	10,99	11,10	13,90
1,00	0,160	1087	1019	18,55	7,65	12,15	7,93	8,38	11,06	12,70	15,85
1,13	0,181	1233	1211	21,06	7,65	12,15	9,72	8,30	11,14	14,40	18,00
1,25	0,200	1369	1389	23,38	7,65	12,15	11,40	8,23	11,21	16,00	20,00
1,50	0,240	1651	1676	28,20	7.65	12,15	16,05	8,08	11,40	19,30	24,15

Schubfeldwerte

	G	anzzuetano	d der Gebrau	chetaualich	rkait 17)		G	irenzzus	tand der	Tragfähi	gkeit 18)	
	O.	CHZZOSIAIR	a dei Gebiad	cristaugiici	INGIL						.asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,I}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	D,GK	1	2	1 1	2	"Rk,g	TR	Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10-4 m ² /kN	10⁴ ·1/kN	10⁴·m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbindi	ung in jedem	Untergurt								
0,75	0,80	0,326	227,244	4,667	2,625	21,18	8,00	9,50	0,229	3,24	7	
0,88	1,22	0,275	149,259	4,667	2,625	27,25	8,00	15,73	0,249	4,17		
1,00	1,71	0,241	106,896	4,667	2,625	33,28	8,00	23,48	0,266	5,09		
1,13	2,35	0,212	77,817	4,667	2,625	40,26	8,00	34,37	0,284	6,16		
1,25	3,05	0,191	59,934	4,667	2,625	47,08	8,00	47,02	0,299	7,20		
1,50	4,88	0,158	37,476	4,667	2,625	62,38	8,00	82,60	0,329	9,55		
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		-
0.75	3,01	0,326	13,599	4,667	1,313	21,18	8,00	9,50	1,325	10,58		
0,88	4,59	0,275	8,932	4,667	1,313	27,25	8,00	15,73	1,325	13,61		
1,00	6,41	0,241	6,397	4,667	1,313	33,28	8,00	23,48	1,325	16,63		
1,13	8,80	0,212	4,657	4,667	1,313	40,26	8,00	34,37	1,325	20,12		
1,25	11,43	0,191	3,587	4,667	1,313	47,08	8,00	47,02	1,325	23,53		
1,50	18,28	0,158	2,243	4,667	1,313	62,38	8,00	82,60	1,325	31,19		

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 200R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f_{y,k} =

320 N/mm²

Anlage 1.38.4 zum Prüfbescheid

ALS TYPENENTWURF in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: FREISTAAT Bearbeiter:

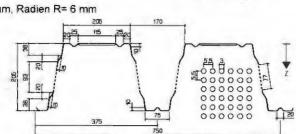
Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				E	Elastis	ch aufr	nehmb	are Sc	hnittgr	ißen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	End	lauf-	Quer-						Line	are Inte	eraktion				
dicke		lager	kraft ⁶⁾	kraft		5	Stützm	oment	е			Zw	ischenau	ıflagerkr	äfte	
		_{a1} = 40 mm	= 90 mm			0 mm	l _{a 8} = 6	60 mm	I _{a B} = 2	00 mm	I _{a.B} = 1	0 mm	I _{a,B} = 6	0 mm	I _{a.B} = 20	00 mm
t _N	M _{c,Rk,F}	R"	Rk,A	V _{w,Rk}	M ⁰ Rk,B	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	Mº Rk,8	M _{c,Rk,8}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m			kNr	n/m					kN	/m		
0,75	18,35		7,59		23,11	18,49	23,11	18,49	23,11	18,49	9,31	7,45	16,26	13,01	25,96	20,77
88,0	22,58	/	10,46		29,06	23,25	29,06	23,25	29,06	23,25	13,09	10,47	22,46	17,97	35,53	28,43
1,00	26,42	1	13,53		34,47	27,58	34,47	27,58	34,47	27,58	17,19	13,75	29,08	23,26	45,67	36,54
1,13	30,56	1	17,34	n.m.	40,48	32,38	40,48	32,38	40,48	32,38	22,35	17,88	37,29	29,83	58,15	46,52
1,25	34,26	1	21,33		46,17	36,93	46,17	36,93	46,17	36,93	27,81	22,25	45,89	36,71	71,12	56,89
1,50	42,00	Ý	31,26		58,43	46,74	58,43	46,74	58,43	46,74	41,59	33,28	67,24	53,79	103,03	82,42

Reststützmomente 8)

	l _{a,}	_B = 10 m	m	l _{a,t}	= 60 m	m	l _{a,E}	= 200 m	m	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										$M_{R,Rk} = 0$ für $L \le min L$
		1 / 1						1		
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
				L						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		+								M _{RRk} = max M _{Rk} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)


Nenn-	Feldmo-	Ve	rbindung	in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		M/\	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	18,49	20,41	-	18,35	-	-	20,41	10,21	-	9,18	-	4	10,21
0,88	23,25	32,70	12	22,58	-		32,70	16,35	-	11,29	-	-	16,35
1,00	27,58	47,40	-	26,42	-	-	47,40	23,70	-	13,21	1.2	100	23,70
1,13	32,38	67,26	-	30,56	-	-	67,26	33,63		15,28	~	- 1	33,63
1,25	36,93	89,77	-	34,26	-		89,77	44,89	-	17,13	100	-	44,89
1,50	46,74	151,13	_	42,00	_	-	151,13	75,56	L	21,00	-	-	75,56

SAB 200R/750 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Maße in mm, Radien R≃ 6 mm

Nennstreckgrenze des Stahlkernes f_{v.k} =

320 N/mm²

Anlage 1.39.1 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

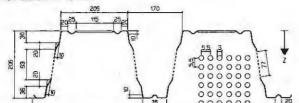
Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ıng		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	(†	I- eff	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	Ct	n	cm²/m cm			m	
0.75	0,112	739	777	11,82	8,13	8,05	4,48	8,86	9,44	9,40	11,75
0,88	0,131	873	921	13,98	8,13	8,05	5,88	8,80	9,42	11,12	13,90
1,00	0,149	998	1055	15,98	8,13	8,05	7,27	8,74	9,33	12,71	15,85
1,13	0,168	1132	1200	18,14	8,13	8,05	8,87	8,69	9,24	14,43	18,00
1,25	0,186	1256	1332	20,14	8,13	8,05	10,39	8,64	9,14	16,02	20,00
1,50	0,223	1515	1607	24,29	8,13	8,05	14,62	8,53	8,91	19,33	24,15

Schubfeldwerte


	G	renzzustano	d der Gebrau	rchstanglich	okeit ¹⁷)		G	renzzus	tand der	Tragfähi	gkeit 18)	
		C IZZUSIAI K	a dei Gebiad		MCG.						asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K* 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} ²¹⁾	für a ≥
	b,Ck	'1	2	'` 1	2	'Rk,g	TR	Rk,I	3		130 mm	280 mn
mm	kN/m	10⁴·m/kN	10⁴·m²/kN	10⁴ · 1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	u T	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	0,67	0,326	241,060	4,667	2,625	20,75	8,00	9,50	0,433	1,74		
0,88	1,02	0,275	158,333	4,667	2,625	26,69	8,00	15,73	0,471	2,24		
1,00	1,42	0,241	113,395	4,667	2,625	32,61	8,00	23,48	0,503	2,74		
1,13	1,95	0,212	82,548	4,667	2,625	39,45	8,00	33,58	0,536	3,31		
1,25	2,54	0,191	63,578	4,667	2,625	46,13	8,00	44,88	0,565	3,87		7
1,50	4,06	0,158	39,755	4,667	2,625	61,12	8,00	75,74	0,621	5,13		.*
Sonderb	efestigur	ng: Verbind	ung mit 2 Scl	hrauben od	ler verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,75	0,62	0,326	182,113	4,667	1,313	20,75	8,00	9,50	0,875	3,76		
0,88	0,94	0,275	119,616	4,667	1,313	26,69	8,00	15,73	0,875	4,84		
1,00	1,31	0,241	85,666	4,667	1,313	32,61	8,00	23,48	0,875	5,91		
1,13	1,80	0,212	62,362	4,667	1,313	39,45	8,00	33,58	0,875	7,15		
1,25	2,33	0,191	48,031	4,667	1,313	46,13	8,00	44,88	0,875	8,36		
1,50	3,73	0,158	30,033	4,667	1,313	61,12	8,00	75,74	0,875	11,08		

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".

SAB 200R/750 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Maße in mm, Radien R= 6 mm Positivlage

Nennstreckgrenze des Stahlkernes f_{y,k} =

320 N/mm²

Anlage 1.39.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05-08.2025 eiter: FREISTAAT Bearbeiter: SACHSEN

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

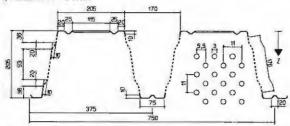
eldmo- ment			gerkraft ⁶	>)	Liasi	isch auf	nenmbar	e Schnitt	großen a	an Zwisc	henaufla	gern 17-7	4) 5) 7)
ment		_ ridadila	goman		Quer-			Qua	dratisch	e Interal	ktion		
				-51	kraft		Stützm	omente		Zw	ischenau	ıflagerkra	äfte
	I _{a,A1} = 40 mm	_{a,A2} = 90 mm	I _{a,A1} = 40 mm	I _{a,A2} = 90 mm		I _{a,B} = 6	0 mm	I _{a B} = 20	00 mm	I _{aB} = 6	0 mm	i _{a,B} = 20	00 mm
M _{c,Rk,F}	R _{T,w}	,Rk,A	R _{G,w}		M ^o _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	$R_{w,Rk,B}$	R ⁰ _{Rk,B}	R _{w,Rk,B}	
Nm/m					kN/m		kNr	n/m			kN	/m	
17,35	6,38	1	6,38			24,31	8,55	20,57	10,30	13,17	12,15	17,12	15,13
22,68	9,23	/	9,23	/		24,90	11,87	34,39	14,98	19,36	17,09	22,68	20,51
27,60	11,86	/	11,86		0.00	25,45	14,94	47,15	19,29	25,07	21,65	27,81	25,47
32,92	15,58		15,58		n.m.	35,00	20,22	48,34	24,63	31,90	27,85	37,52	33,25
37,84	18,98	1	18,98			43,82	25,10	49,43	29,56	38,21	33,56	46,48	40,43
45,66	22,90	1	22,90		52,87	30,28	59,64	35,66	46,10	40,50	56,08	48,78	
N 1 2 3 3	m/m 7,35 2,68 7,60 2,92 7,84	**A1 40 mm **R _{T,w} **m/m 7,35 6,38 2,68 9,23 7,60 11,86 2,92 15,58 7,84 18,98	**AA1	**AA1 **AA2 **AA1 **AA1 **AA2 **AA1	40 mm 90 mm 40 mm 90 mm	40 mm 90 mm 40 mm 90 mm	40 mm 90 mm 40 mm 90 mm	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40 mm 90 mm 40 mm 90 mm 40 mm 90 mm 40 mm 90 mm M° _{Rk,B}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{a,A1} = 40 mm I _{a,A2} = 40 mm I _{a,A1} = 90 mm I _{a,B} = 60 mm I _{a,B} = 200 mm I _{a,B} = 60 mm c,Rk,F R _{T,w,Rk,A} R _{G,w,Rk,A} V _{w,Rk} M° _{Rk,B} M° _{Rk,B} M° _{Rk,B} M° _{Rk,B} R° _{Rk,R} R° _{Rk,B} R° _{Rk,R} <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Reststützmomente 8)

	l _{a,}	_B = 60 mm		m m k 13,00 14,40 12,67 14,08 12,37 13,78 12,06 13,47	1	Reststüt	zmomente M _{R,Rk}	
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}		
mm	m	m	kNm/m	m	m	kNm/m		
0,75	16,27	17,63	2,33	13,00	14,40	2,92	$M_{R,Rk} = 0$	für L≤min L
0,88	15,68	17,04	3,15	12,67	14,08	3,93		
1,00	15,13	16,50	3,92	12,37	13,78	4,86	M = L-	min L max M _{R.Rk}
1,13	14,79	16,17	4,75	12,06	13,47	5,86	$M_{R,Rk} = \frac{L}{\text{max L}}$	- min L
1,25	14,48	15,86	5,51	11,77	13,19	6,79		
1,50	14,48	15,86	6,65	11,77	13,19	8,19	$M_{R,Rk} = max M$	_{R,k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

	Feldmo-	Ve	erbindung	j in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Modern Result Result <th< th=""><th>Endauf- lagerkraft</th><th></th><th>MΛ</th><th>/- Intera</th><th>ktion</th><th></th></th<>	Endauf- lagerkraft		MΛ	/- Intera	ktion						
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	R _{w,Rk,A}	M ^o _{Rk,B}	M _{c,Rk,B}	$R^0_{Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m		kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	17,52	10,14	-	18,12	-	-	10,14	5,07	-	9,06	-	-	5,07
0,88	21,47	16,22	4	22,86	-	-	16,22	8,11	-	11,43	-		8,11
1,00	24,99	23,55	-	27,16	-	-	23,55	11,78	-	13,58	-	-	11,78
1,13	28,86	33,58	-	31,93	-	_	33,58	16,79	-	15,97	-	-	16,79
1,25	32,48	44,88	-	36,45		-	44,88	22,44	-	18,22	-	-	22,44
1,50	39,99	75,74	-	46,16	_	-	75,74	37,87	_	23,08	-	-	37,87


SAB 200R/750 P4L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

Anlage 1.40.1 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter:

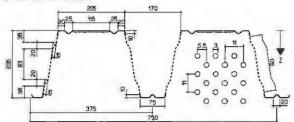
SACHSEN

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norn	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	l+ eff	I- eff	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	Lgr	Lgr
mm	kN/m²	cm	⁴/m	cm²/m	cm²/m cm		cm²/m	cr	n		m
0,75	0,111	699	707	11,22	7,98	7,93	4,16	8,84	9,29	9,40	11,75
0,88	0,130	834	841	13,28	7,98	7,93	5,47	8,77	9,27	11,12	13,90
1,00	0,148	959	966	15,17	7,98	7,93	6,77	8,70	9,17	12,71	15,85
1,13	0,167	1081	1097	17,23	7,98	7,93	8,35	8,62	9,07	14,43	18,00
1,25	0,185	1193	1217	19,13	7,98	7,93	10,07	8,56	8,96	16,02	20,00
1,50	0,222	1440	1469	23,08	7,98	7,93	13.55	8,46	8.78	19,33	24,15

Schubfeldwerte

	Gr	enzzustand	d der Gebrau	ichetauglich	nkeit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	O,	CHZZUSIAIR	a dei Ocolad	icristaugiici	INGIL					i	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K ₂ ^{14) 15)}	K*, 15)	K* 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	D,CK		2		2	- Rk,g	-R	- Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10-4 · m ² /kN	10⁴ ·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbindi	ung in jedem	Untergurt					_			
0,75	0,61	0,326	263,994	4,667	2,625	19,38	8,00	9,50	0,433	1,59	1	
0,88	0,93	0,275	173,397	4,667	2,625	24,94	8,00	15,73	0,471	2,04		/
1,00	1,30	0,241	124,183	4,667	2,625	30,47	8,00	23,48	0,503	2,50		
1,13	1,78	0,212	90,401	4,667	2,625	36,87	8,00	34,37	0,536	3,02		
1,25	2,32	0,191	69,627	4,667	2,625	43,12	8,00	47,02	0,565	3,53		
1,50	3,71	0,158	43,537	4,667	2,625	57,14	8,00	82,60	0,621	4,68		
Sonderb	efestigur	ng: Verbindi	ung mit 2 Scl	hrauben od	ler verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,75	0,56	0,326	199,439	4,667	1,313	19,38	8,00	9,50	0,875	3,43	1	
0,88	0,86	0,275	130,996	4,667	1,313	24,94	8,00	15,73	0,875	4,42		
1,00	1,19	0,241	93,816	4,667	1,313	30,47	8,00	23,48	0,875	5,39		
1,13	1,64	0,212	68,295	4,667	1,313	36,87	8,00	34,37	0,875	6,53		
1,25	2,13	0,191	52,601	4,667	1,313	43,12	8,00	47,02	0,875	7,63		
1,50	3,41	0,158	32,891	4,667	1,313	57,14	8,00	82,60	0,875	10,12		

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 200R/750 P4L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes fyk =

320 N/mm²

Anlage 1.40.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05 08.2025 eiter: FREISTAAT Bearbeiter:

SACHSEN SACHSEN

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

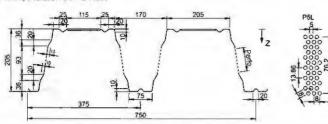
Nenn-	Feldmo-		Endaufla	gerkraft ⁶	5)	Elast	tisch auf	nehmbar	e Schnit	tgrößen a	an Zwisc	henaufla	gern 1) 2)	4) 5) 7)
blech-	ment		Litadana	gernian		Quer-			Qua	dratisch	e Intera	ktion		
dicke						kraft		Stützm	omente		Zw	ischenau	ıflagerkr	äfte
		I _{a,A1} = 40 mm	1 _{a,A2} = 90 mm	I _{a,A1} = 40 mm	I _{a,A2} = 90 mm		t _{a,8} = 6	0 mm	I _{a B} = 2	00 mm	I _{a,B} = 6	60 mm	I _{a 8} = 20	00 mm
t _N	M _{c,Rk,F}	R _{J,w}	v,Rk,A	R _{G,v}	v,Rk,A		M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m			l/m		kN/m		kNr	n/m			kN	l/m	
0,75	16,70	6,31	1	6,31	/		24,31	8,55	20,57	10,30	13,04	12,03	16,95	14,98
0,88	21,37	9,14	1	9,14	/		24,90	11,87	34,39	14,98	19,17	16,92	22,46	20,30
1,00	25,67	11,75	1	11,75		200	25,45	14,94	47,15	19,29	24,82	21,44	27,54	25,22
1,13	30,59	15,43	/	15,43	/	n.m.	35,00	20,22	48,34	24,63	31,58	27,57	37,15	32,92
1,25	35,13	18,79		18,79			43,82	25,10	49,43	29,56	37,83	33,23	46,02	40,03
1,50	42,39	22,67	/	22,67		52,87	30,28	59,64	35,66	45,64	40,10	55,53	48,30	
			1		/									

Reststützmomente 8)

	l _{a,1}	_B = 60 mm		l _{a,i}	= 200 mm		Reststüt	zmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}		
mm	m	m	kNm/m	m	m	kNm/m		
0,75	16,27	17,63	2,53	13,00	14,40	3,18	$M_{R,Rk} = 0$	für L≤min L
0,88	15,68	17,04	3,39	12,67	14,08	4,19		
1,00	15,13	16,50	4,19	12,37	13,78	5,13	M - L-	min L · max M _{R,Rk}
1,13	14,79	16,17	5,12	12,06	13,47	6,30	$M_{R,Rk} = \frac{L}{\text{max L}}$	- min L
1,25	14,48	15,86	5,99	11,77	13,19	7,38		
1,50	14,48	15,86	7,23	11,77	13,19	8,91	$M_{R,Rk} = \max M$	_{Rk} für L≥max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

	Feldmo-	Ve	rbindung	j in jeden	n anliege	enden Gu	rt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MA	/- Intera	ktion	
t _N	M _{c,Rk,F}	$R_{w,Rk,A}$	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	15,46	11,10	-	16,18	-	-	11,10	5,55	-	8,09	-	-	5,55
0,88	19,33	17,83	L	20,48	-	-	17,83	8,91	-	10,24		-	8,91
1,00	22,57	26,00	-	24,36	-	-	26,00	13,00	-	12,18	-		13,00
1,13	26,17	37,07	-	28,69	-	-	37,07	18,54	-	14,35	-	- 0	18,54
1,25	29,56	49,58	-	32,80	_	-	49,58	24,79	-	16,40	u	-	24,79
1,50	36,33	83,77	-	41,67	-	-	83,77	41,89	14	20,83	-	-	41,89


SAB 200R/750 P5L

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f

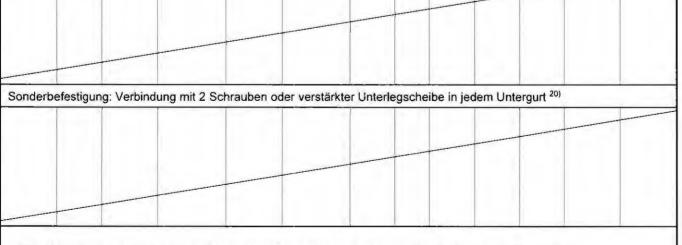
320 N/mm²

Anlage 1.41.1 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leipzig, den 05.08.2025
Leiter: Bearbeiter: SACHSEN


Maßgebende Querschnittswerte

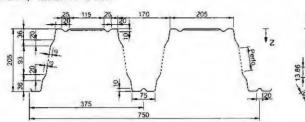
Nenn-	Eigenlast	Biegu	ng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	l-	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	Lgr	L _{gr}
mm	kN/m²	cm ²	¹ /m			cm²/m	cr	n		m	
0,75	0,120	680	773	11,45	8,24	7,98	4,39	8,92	9,43	8,65	10,81
0,88	0,141	816	916	13,55	8,24	7,98	5,76	8,87	9,41	10,23	12,79
1,00	0,160	945	1048	15,48	8,24	7,98	7,11	8,81	9,32	11,69	14,62
1,13	0,181	1086	1192	17,57	8,24	7,98	8,66	8,76	9,22	13,28	16,59
1,25	0,200	1219	1324	19,50	8,24	7,98	10,10	8,72	9,13	14,75	18,43
1,50	0,240	1501	1597	23,53	8,24	7,98	14,19	8,62	8,88	17,78	22,23

Schubfeldwerte

	G	enzzuetan/	d der Gebrau	chetauglich	akait 17)		G	renzzus	tand der	Tragfäh	gkeit 18)	
	0	CHZZUSIAN	dei Gebiau	icristaugiici	INCIL						asteinleitu	ing
t _N	T	K, 14) 15)	K 14) 15)	K* 15)	K*, 15)	T 16)	I 16)	Т	K 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck		1,2	7. 1	1 2	Rk,g	_R	'Rk,I	N ₃		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m ² /kN	10-4-1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN

Normalbefestigung: Verbindung in jedem Untergurt

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)". (Klasse 2 nach DIN EN 508-1:2014)
Weitere Fußnoten siehe Beiblatt 1/2 bzw. 2/2


SAB 200R/750 P5L

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Anlage 1.41.2 zum Prüfbescheid

ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: FREISTAAT Bearbeiter:

Nennstreckgrenze des Stahlkernes f_{y,k} = 320 N/mm²

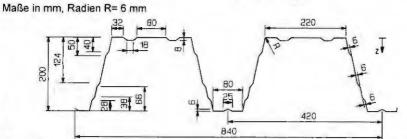
Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feld-		Endaufla	gerkraft ⁶	5)	Elas	tisch aufi	nehmbar	e Schnit	tgrößen a	an Zwisc	henaufla	gern ^{1) 2)}	4) 5) 7)
blech-	moment		Lindadiid	gention		Quer-			Qua	dratisch	e Intera	ktion		
dicke						kraft		Stützm	omente		Zw	ischenau	ıflagerkr	äfte
		I _{a,A1} = 40 mm	I _{a.A2} = 90 mm	l _{a,A1} = 40 mm	I _{a,A2} = 90 mm		l _{a,B} = 6	50 mm	I _{a,B} = 2	00 mm	I _{a B} = 6	60 mm	f _{a,B} = 2	00 mm
	M _{c,Rk,F}	R _{T,v}	v,Rk,A	$R_{g,v}$	v,Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	Rº RK,B	R _{w,Rk,B}
mm	kNm/m			l/m		kN/m		kNr	n/m			kN	l/m	
0,75	15,89	5,81	/	5,81	/		24,31	8,55	20,57	10,30	12,00	11,07	15,60	13,78
0,88	20,66	8,41	/	8,41	1		24,90	11,87	34,39	14,98	17,63	15,57	20,66	18,68
1,00	25,23	10,81	/	10,81			25,45	14,94	47,15	19,29	22,83	19,73	25,33	23,20
1,13	30,19	14,18	1	14,18	/	n.m.	35,00	20,22	48,34	24,63	29,06	25,37	34,18	30,29
1,25		17,29			43,82	25,10	49,43	29,56	34,80	30,57	42,34	36,82		
1,50	44,82	20,86		20,86	1		52,87	30,28	59,64	35,66	41,99	36,89	51,09	44,43
.,	,	,	/	,	/		,	,		,				

Reststützmomente 8)

	l _{a,i}	= 60 mm	1	l _{a,t}	= 200 mm	1	Reststütz	zmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}		
mm	m	m	kNm/m	m	m	kNm/m		
							$M_{R,Rk} = 0$	für L≤min L
				-				esta I
							$M_{R,Rk} = \frac{L - max L}{max L}$	min L - min L · max M _{R,Rk}
			+					

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)


Nenn-	Feldmo-	Ve	erbindung	g in jeden	n anliege	enden Gu	rt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MΛ	- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	15,35	8,37	-	15,89	-	-	8,37	4,19	-	7,95	-	-	4,19
0,88	19,31	13,39	-	20,66	-	-	13,39	6,69	-	10,33	-	- 1	6,69
1,00	22,85	19,39	-	25,23	-	-	19,39	9,70	-	12,61	-	-	9,70
1,13	26,75	27,55	-	30,19	-	-	27,55	13,78	-	15,10	-	- 1	13,78
1,25	30,41	36,82	-	34,85	-	_	36,82	18,41	-	17.43	-	- 1	18,41
1,50	38,17	62,16		44,82		-	62,16	31,08	_	22,41	-	- 1	31,08

SAB 200R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Anlage 1.42.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

I.V. X MEDICAL STREET

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

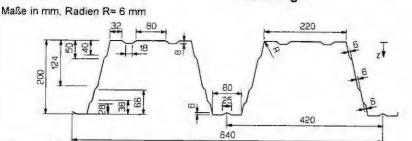
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I+ eff	j- eff	A _q	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	Lgr	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m			cm²/m	cr	n		m
0,75	0,107	679	691	12,38	7,47	8,06	4,31	7,75	8,22	9,20	11,50
0,88	0,126	803	818	14,64	7,47	8,06	5,57	7,73	8,12	12,25	15,30
1,00	0,143	917	934	16,73	7,47	8,06	6,77	7,69	8,00	14,10	17,60
1,13	0,161	1041	1061	18,99	7,47	8,06	8,09	7,65	7,94	15,85	19,80
1,25	0,179	1156	1177	21,08	7,47	8,06	9,35	7,62	7,89	17,30	21,60
1,50	0,214	1401	1420	25,43	7,47	8,06	12,17	7,56	7,82	20,25	25,30

Schubfeldwerte

	G	renzzustano	d der Gebrau	chstauglich	rkeit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
		- CHEECOLOTT	a dei George	·	INCIL					l	_asteinleitL	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K* 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	D,CK	1	. 12		2	Rk.g	¬R	- RK,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10⁴ ·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbindi	ung in jedem	Untergurt								
0,75	0,82	0,298	190,041	4,167	2,940	19,34	8,00	8,69	0,399	2,01		
0,88	1,24	0,252	124,823	4,167	2,940	24,88	8,00	14,39	0,434	2,59		
1,00	1,74	0,220	89,396	4,167	2,940	30,40	8,00	21,48	0,464	3,17		
1,13	2,38	0,194	65,077	4,167	2,940	36,77	8,00	31,45	0,494	3,83		
1,25	3,09	0,175	50,122	4,167	2,940	43,00	8,00	43,02	0,520	4,48		
1,50	4,95	0,145	31,341	4,167	2,940	56,98	8,00	75,57	0,572	5,94		
Sonderb	efestigur	ng: Verbindi	ung mit 2 Scl	hrauben od	er verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,75	0,76	0,298	138,488	4,167	1,470	19,34	8,00	8,69	0,796	4,55		
0.88	1,15	0,252	90,962	4,167	1,470	24,88	8,00	14,39	0,796	5,85		
1,00	1,61	0,220	65,145	4,167	1,470	30,40	8,00	21,48	0,796	7,15		
1,13	2,21	0,194	47,423	4,167	1,470	36,77	8,00	31,45	0,796	8,65		
1,25	2,87	0,175	36,525	4,167	1,470	43,00	8,00	43,02	0,796	10,12		
1,50	4,59	0,145	22,839	4,167	1,470	56,98	8,00	75,57	0,796	13,41		

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


Nennstreckgrenze des Stahlkernes f., =

SAB 200R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Leiter:

Anlage 1.42.2 zum Prüfbescheid ALS TYPENENTWURF in baustatischer Hinsicht geprüft.

Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Bearbeiter: FREISTAAT SACHSEN

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

320 N/mm²

Nenn-	Feldmo-					Elastis	ch aufi	nehmb	are So	hnittgr	ößen an	Zwische	nauflage	ern ^{1) 2) 4)}	5) 7)	
blech- dicke	ment	End	lauf- kraft ⁶⁾	Quer-						Line	eare Inte	eraktion				
cicke		lagen	Mail	kraft			Stützm	oment	е			Zw	ischena	uflagerkr	äfte	
t _N		_{a1} = 40 mm	l _{a2} = 90 mm		I _{a,B} = 1	0 mm	I _{a B} = 11	00 mm	I _{a,B} = 2	00 mm	I _{a B} = 1	0 mm	I _{a B} = 10	00 mm	i _{a,8} = 2	00 mm
t _N	t _N M _{c,Rk,F}	R _w	Rk,A	$V_{w,Rk}$	M ⁰ _{Rk,B}	M _{c,Rk,B}	M° Rk,B	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm			kN/m			kNr	n/m					kN	l/m			
0,75	14,69	5,01	6,71		18,71	14,97	18,71	14,97	18,71	14,97	8,26	6,61	17,46	13,97	23,04	18,43
0,88	19,17	6,84	9,11		23,77	19,02	23,77	19,02	23,77	19,02	11,45	9,16	23,68	18,95	31,09	24,87
1,00	23,09	8,76	11,59		28,22	22,57	28,22	22,57	28,22	22,57	14,82	11,86	30,12	24,09	39,38	31,51
1,13	27,26	11,06	14,56	n.m.	33,07	26,45	33,07	26,45	33,07	26,45	18.93	15,14	37.81	30,25	49.25	39,40
1,25	31,14	13,40	17,55		37,08	29,67	37,08	29,67	37,08	29,67	23,13	18,51	45,56	36,45	59.15	47,32
1,50	40,35	18,90	24,54		45,51	36,41	45,51	36,41	45,51	36,41	33,16	26,52	63,65	50,92	82,12	65,70
								200								

Reststützmomente 8)

	l _{a,}	_e = 10 m	m	l _{a,6}	= 100 m	m	l _{a,6}	=200 m	m	Reststützmomente M _{R,Rk}
L _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										M _ L _ min L _ max M
										$M_{RRk} = \frac{L - min L}{max L - min L} \cdot max M_{R}$
										M _{RRk} = max M _{Rk} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-		Ve	erbindung	j in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	iurt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	$R_{w,Rk,A}$	M ⁰ _{Rk,B}	M _{c,Rk,B}	$R^0_{Rk,B}$	R _{w,Rk,B}	V _{w,Rk}	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	14,97	15,87	-	14,69	-	-	15,87	7,94	-	7,34		-	7,94
0,88	19,02	25,35	-	19,17	-	-	25,35	12,67		9,58	-	-	12,67
1,00	22,57	36,79	-	23,09		-	36,79	18,39	_	11,55	_	-	18.39
1,13	26,45	52,42	-	27,26		-	52,42	26,21	_	13,63	-		26,21
1,25	29,67	70,11	-	31,14		-	70,11	35,06	-	15,57	-	_	35,06
1,50	36,41	118,51	4	40,35	-	_	118.51	59,26	_	20,17		_	59,26

SAB 200R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Negativlage

Maße in mm, Radien R= 6 mm

840

420

5

7

Anlage 1.42.3 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

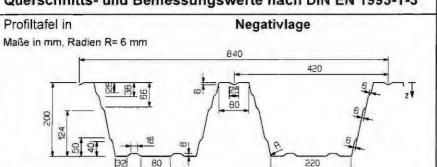
Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f_{y,k} = 320 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ng		Grenzstü	tzweiten 13)
blech- dicke		3-		nicht reduz	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	l- eff	A _g	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	cm ⁴ /m cm ² /m cm		cm²/m	cr	n		m		
0,75	0,107	691	679	12,38	7,47	11,94	4,31	7,75	11,78	9,40	11,75
0,88	0,126	818	803	14,64	7,47	11,94	5,57	7,73	11,88	12,20	15,25
1,00	0,143	934	917	16,73	7,47	11,94	6,77	7,69	12,00	13,85	17,30
1,13	0,161	1061	1041	18,99	7,47	11,94	8,09	7,65	12,06	15,45	19,30
1,25	0,179	1177	1156	21,08	7,47	11,94	9,35	7,62	12,11	16,65	20,80
1,50	0,214	1420	1401	25,43	7,47	11,94	12,17	7,56	12,18	18,75	23,40


Schubfeldwerte

	0		O - b	المائلين بمائما	stemia 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	renzzustano	der Gebrau	cnstaugiici	ikeit "						asteinleitu	ing
t _N	т	K, 14) 15)	K ₃ ^{14) 15)}	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} ²¹⁾	für a ≥
	T _{b,Ck}	n ₁	112	1 1	1 2	* Rk.g	_R	* Rk,I	.,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m ² /kN	10⁴ ·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	0,79	0,298	226,865	4,167	2,940	19,34	8,00	8,69	0,211	3,08	7	
0,88	1,20	0,252	149,010	4,167	2,940	24,88	8,00	14,39	0,230	3,96		
1,00	1,67	0,220	106,717	4,167	2,940	30,40	8,00	21,48	0,246	4,84		
1,13	2,29	0,194	77,687	4,167	2,940	36,77	8,00	31,45	0,262	5,86		
1,25	2,98	0,175	59,834	4,167	2,940	43,00	8,00	43,02	0,276	6,85		
1,50	4,77	0,145	37,414	4,167	2,940	56,98	8,00	75,57	0,303	9,08		
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	er Unterle	egsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	3,29	0,298	11,593	4,167	1,470	19,34	8,00	8,69	1,149	10,72		
0,88	5,00	0,252	7,615	4,167	1,470	24,88	8,00	14,39	1,149	13,79		
1,00	6,99	0,220	5,454	4,167	1,470	30,40	8,00	21,48	1,149	16,85		
1,13	9,60	0,194	3,970	4,167	1,470	36,77	8,00	31,45	1,149	20,38		
1,25	12,46	0,175	3,058	4,167	1,470	43,00	8,00	43,02	1,149	23,84		
1,50	19,92	0,145	1,912	4,167	1,470	56,98	8,00	75,57	1,149	31,60		

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".

SAB 200R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1.42.4 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 FREISTAAT Bearbeiter:

Nennstreckgrenze des Stahlkernes f., = 320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				ŀ	Elastis	ch aufr	nehmb	are Sc	hnittgrö	ißen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	End	auf-	Quer-						Line	are Inte	eraktion				
dicke		lagen	kraft ⁶⁾	kraft		5	Stützm	oment	е			Zw	ischena	uflagerkra	äfte	
t _N		_{a1} = 40 mm	= 90 mm		i _{a,B} = 1	0 mm		00 mm	I _{a B} = 2	00 mm	I _{a,B} = 1	0 mm	I _{a,B} = 1	00 mm	l _{a,B} = 2	00 mm
t _N	t _N M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ _{RK,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNr	n/m					kN	l/m		
0,75	14,97	5,01	6,71		18,36	14,69	18,36	14,69	18,36	14,69	8,26	6,61	17,46	13,97	23,04	18,43
0,88	19,02	6,84	9,11		23,96	19,17	23,96	19,17	23,96	19,17	11,45	9,16	23,68	18,95	31,09	24,87
1,00	22,57	8,76	11,59		28,87	23,09	28,87	23,09	28,87	23,09	14,82	11,86	30,12	24,09	39,38	31,51
1,13	26,45	11,06	14,56	n.m.	34,08	27,26	34,08	27,26	34,08	27,26	18,93	15,14	37,81	30,25	49,25	39,40
1,25	29,67	13,40	17,55		38,92	31,14	38,92	31,14	38,92	31,14	23,13	18,51	45,56	36,45	59,15	47,32
1,50	36,41	18,90	24,54		50,44	40,35	50,44	40,35	50,44	40,35	33,16	26,52	63,65	50,92	82,12	65,70

Reststützmomente 8)

	l _{a,t}	= 10 m	m	l _{a,l}	= 100 m	m	l _{a,£}	=200 m	m	Reststützmomente M _{R,Rk}
T _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	n	kNm/m	m	m	kNm/m	
										M _{R Rk} = 0 für L≤min L
										$M_{RRk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{RRk}$
								ļ		M _{R.Rk} = max M _{R.k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	Feldmo-	Ve	erbindung	j in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ Rk,B	M _{c,Rk,B}	$\mathbf{R}^{0}_{\mathrm{Rk,B}}$	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	14,69	15,87	-	14,97	-	-	15,87	7,94	-	7,48	-	-	7,94
0,88	19,17	25,35	-	19,02		-	25,35	12,67	0.1	9,51	-	-	12,67
1,00	23,09	36,79	-	22,57	-	-	36,79	18,39	-	11,29	-	-	18,39
1,13	27,26	52,42	-	26,45	-	-	52,42	26,21	-	13,23	-	-	26,21
1,25	31,14	70,11	-	29,67	-	-	70,11	35,06	-	14,83	-	- 1	35,06
1,50	40,35	118.51	-	36,41	-	-	118,51	59,26	-	18,20	-	-	59,26

SAB 200R/840 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1.43.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: FREISTAAT Bearbeiter:

Nennstreckgrenze des Stahlkernes f., =

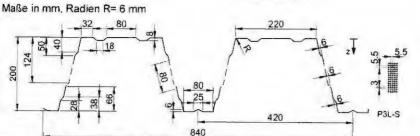
320 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten b)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksame	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	l- _{eff}	Ag	i _g	Z _g	A _{eff}	ien	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm ⁴	¹/m	cm²/m cm c		cm ² /m	cr	n		m	
0,75	0,102	679	679	10,77	7,94	7,87	3,84	8,16	8,08	-	_
0,88	0,119	803	803	12,74	7,94	7,87	4,95	8,13	7,97	9,60	9,60
1,00	0,136	917	917	14,56	7,94	7,87	6,01	8,09	7,84	12,80	12,80
1,13	0,153	1041	1041	16,53	7,94	7,87	7,18	8,05	7,77	14,52	14,52
1,25	0,169	1156	1156	18,35	7,94	7,87	8,29	8,02	7,71	16,10	16,10
1,50	0,203	1394	1394	22,14	7,93	7,87	10,78	7,97	7,62	16,88	16,88

Schubfeldwerte

	G	enzzuetanz	d der Gebrau	chetaualich	akesit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	J.	CHEZOSTON	der Octifac	ionstaugher	bich					L	asteinleitu	ing
t,	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K* 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,1}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} ²¹⁾	füra≥
	D,CX	1	2	1	. 2	* Rk,g	-R	RK,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10⁴·m²/kN	10 ⁻⁴ ·1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ıg: Verbindi	ung in jedem	Untergurt								
0,75	0,679	0,298	228,344	4,167	2,940	19,07	8,00	8,02	0,399	1,68	- /	
0,88	1,034	0,252	149,981	4,167	2,940	24,54	8,00	12,81	0,434	2,16		
1,00	1,444	0,220	107,413	4,167	2,940	29,98	8,00	18,59	0,464	2,63		
1,13	1,984	0,194	78,193	4,167	2,940	36,26	8,00	26,52	0,494	3,19		
1,25	2,576	0,175	60,224	4,167	2,940	42,41	8,00	35,53	0,520	3,73		
1,50	4,119	0,145	37,658	4,167	2,940	56,19	8,00	60,24	0,572	4,94		
Sonderb	efestigur	g: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,75	0,630	0,298	166,400	4,167	1,470	19,07	8,00	8,02	0,796	3,79	7	
0,88	0,959	0,252	109,295	4,167	1,470	24,54	8,00	12,81	0,796	4,87		
1,00	1,338	0,220	78,275	4,167	1,470	29,98	8,00	18,59	0,796	5,95		
1,13	1,839	0,194	56,981	4,167	1,470	36,26	8,00	26,52	0,796	7,20		
1,25	2,387	0,175	43,887	4,167	1,470	42,41	8,00	35,53	0,796	8,42		
1,50	3,818	0,145	27,442	4,167	1,470	56,19	8,00	60,24	0,796	11,16		


- a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)". (Klasse 2 nach DIN EN 508-1:2014)
- b) Das Betreten der Profitafeln ist nur nach der Befestigung auf der Unterkonstruktion zulässig. Weitere Fußnoten siehe Beiblatt 1/2 bzw. 2/2

SAB 200R/840 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Nennstreckgrenze des Stahlkernes $f_{y,k} = 320 \text{ N/mm}^2$

Anlage 1.43.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

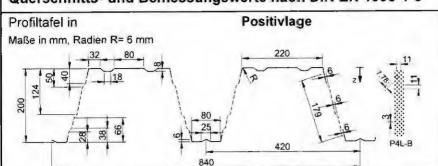
Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: FREISTAAT Bearbeiter:

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feld-	1	Endaufla	gerkraft ¹	5)	Elas	tisch auf	nehmbar	e Schnit	tgrößen a	an Zwisc	henaufla	gern ^{1) 2)}	4) 5) 7)
blech- dicke	moment			90.11.01.1		Quer-			Qua	dratisch	e Intera	ktion		
CHERE		-				kraft		Stützm	omente		Zw	rischenau	ıflagerkr	äfte
		I _{a,A1} = 40 mm	I _{a.A2} = 90 mm	f _{a,A1} = 40 mm	l _{a.A2} = 90 mm		I _{#,8} = 6	60 mm	1 _{e,8} = 2	00 mm) _{a,B} = 6	60 mm	I _{a B} = 2	00 mm
t _N	M _{c,Rk,F}	R _{T,v}	v,Rk,A	$R_{G,v}$	v,Rk,A		Mº Rk,B	M _{c,Rk,B}	M° Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m			l/m		kN/m			n/m				l/m	
0,75	14,14	5,95	6,74	4,05	4,94		11,95	6,16	11,82	7,58	10,83	10,64	15,56	14,38
0,88	18,34	8,88	9,88	6,22	7,56		15,01	9,11	15,88	11,04	16,76	15,69	22,91	20,63
1,00	22,22	11,59	12,78	8,23	9,98		17,83	11,83	19,63	14,23	22,24	20,35	29.70	26.39
1,13	27,62	15,91	17,55	11,58	14,22	n.m.	22,39	16,24	25,39	19,78	32,04	27,74	43,66	36,06
1,25	32,59	19,90	21,96	14,68	18,13		26,61	20,32	30,70	24,91	41,08	34,56	56,54	44,99
1,50	39,33	24,01	26,50	17,72	21,88		32,11	24,52	37,05	30,05	49,57	41.70	68.23	54.29

Reststützmomente 8)


	l _{a,l}	_B = 60 mm		l _{a,t}	= 200 mm		Reststützmomente M _{R.Rk}
LN	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	
0,75	12,78	13,67	1,81	8,74	9,67	2,67	$M_{R,Rk} = 0$ für $L \le min L$
0,88	11,70	12,60	2,64	8,15	9,10	3,78	
1,00	10,70	11,61	3,41	7,61	8,56	4,82	M = L - min L
1,13	9,80	10,71	4,75	7,22	8,18	6,39	$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
1,25	8,96	9,89	5,99	6,87	7,83	7,84	
1,50	8,96	9,89	7,23	6,87	7,83	9,46	$M_{R,Rk} = \max M_{R,k}$ für $L \ge \max L$

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	Feldmo-	Ve	erbindung	g in jeden	n anliege	enden Gu	rt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	14,03	8,02	-	14,19	-	-	8,02	4,01	-	7,10	-	-	4,01
0,88	18,02	12,81	-	18,57	-	-	12,81	6,40	-	9,28	-	-	6,40
1,00	21,55	18,59	-	22,60	-	-	18,59	9,30		11,30	2.1	-	9.30
1,13	25,35	26,52	-	26,76	-	-	26,52	13,26	-	13,38	-	_	13,26
1,25	28,52	35,53	-	30,65	-	-	35,53	17,77	14	15,32	-	_	17,77
1,50	35,05	60,24	-	39,82	-	-	60,24	30,12	-	19,91	_		30,12

SAB 200Ft/840 P4L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1.44.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

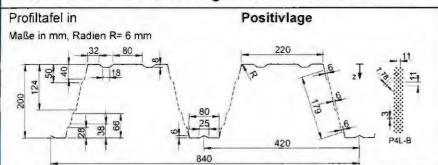
Landesstelle für Bautechnik

Leipzig, den 05.08.2025
Leiter: FREISTAAT Bearbeiter:
SACHSEN

Nennstreckgrenze des Stahlkernes f_{v.k} = 320 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	na ¹¹⁾		Norn	nalkraftbe	anspruchu	ng		Grenzstü	tzweiten ^{b)}
blech- dicke		3	3	nicht reduz	zierter Qu	erschnitt	wirksame	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	I- _{eff}	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m² cm⁴/m		/m	cm²/m	cr	n	cm²/m	Cr	n		m
0,75	0,101	614	614	10,15	7,78	7,62	3,65	8,05	7,88	-	-
0,88	0,119	726	726	12,01	7,78	7,62	4,71	8,02	7,77	9,60	9,60
1,00	0,135	830	830	13,72	7,78	7,62	5,72	7,97	7,63	12,80	12,80
1,13	0,152	942	942	15,58	7,78	7,62	6,83	7,92	7,56	14,52	14,52
1,25	0,168	1046	1046	17,30	7,78	7,62	7,88	7,89	7,49	16,10	16,10
1,50	0,202	1262	1262	20,87	7,78	7,62	10,24	7,82	7,40	16,88	16,88


Schubfeldwerte

	_			alanta wali ali	alenta 17)		G	renzzust	and der	Tragfähi	gkeit ¹⁸⁾	
	Gr	enzzustano	der Gebrau	cnstaugiicr	ikeit "					L	asteinleitu	ng
t _N	T	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T 16)	L _R 16)	T _{Rk,i}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	T _{b,Ck}	1	N ₂	1 1	1 2	T _{Rk,g} 16)	_R	'Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m²/kN	10-4-1/kN	10 ⁻⁴ ·m²/kN	kN/m	m	kN/m	- 1	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	0,620	0,298	250,264	4,167	2,940	17,69	8,00	8,68	0,399	1,53	y	
0,88	0,944	0,252	164,379	4,167	2,940	22,76	8,00	13,99	0,434	1,97		
1,00	1,318	0,220	117,724	4,167	2,940	27,81	8,00	20,35	0,464	2,40		
1,13	1,810	0,194	85,699	4,167	2,940	33,64	8,00	29,10	0,494	2,91		
1,25	2,350	0,175	66,006	4,167	2,940	39,35	8,00	39,03	0,520	3,40		
1,50	3,758	0,145	41,273	4,167	2,940	52,15	8,00	66,21	0,572	4,51		
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	er Unterle	egschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,75	0,574	0,298	182,374	4,167	1,470	17,69	8,00	8,68	0,796	3,45	7	
0,88	0,875	0,252	119,787	4,167	1,470	22,76	8,00	13,99	0,796	4,44		
1,00	1,221	0,220	85,789	4,167	1,470	27,81	8,00	20,35	0,796	5,43		
1,13	1,677	0,194	62,451	4,167	1,470	33,64	8,00	29,10	0,796	6,57		
1,25	2,178	0,175	48,100	4,167	1,470	39,35	8,00	39,03	0,796	7,68		
1,50	3,483	0,145	30,076	4,167	1,470	52,15	8,00	66,21	0,796	10,19		

- a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)". (Klasse 2 nach DIN EN 508-1:2014)
- Das Betreten der Profitafeln ist nur nach der Befestigung auf der Unterkonstruktion zulässig. Weitere Fußnoten siehe Beiblatt 1/2 bzw. 2/2

SAB 200R/840 P4L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Leiter FREISTAAT

Anlage 1.44.2 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Bearbeiter: SACHSEN

Nennstreckgrenze des Stahlkernes f = 320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feld-		Endaufla	gerkraft ⁶	5)	Elast	tisch aufi	nehmbar	e Schnit	tgrößen a	an Zwisc	henaufla	gern ^{1) 2)}	(4) 5) 7)
blech-	moment			goman		Quer-			Qua	dratisch	e Intera	ktion		
dicke						kraft		Stützm	omente		Zw	rischenau	ıflagerkr	äfte
		l _{a,A1} = 40 mm	I _{a,A2} = 90 mm	I _{a,A1} = 40 mm	I _{a,A2} = 90 mm		I _{a,B} = 6	0 mm	I _{a,B} = 2	00 mm	I _{a,B} = 6	60 mm	I _{a,B} = 2	00 mm
t _N	M _{c,Rk,F}	R _{T,v}	v,Rk,A	R _{g,v}	v,Rk,A	1 - 27 1 - 2 - 2 - 2	M ⁰ _{Rk,B}	M _{c,Rk,B}	M⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R° RK,B	R _{w,Rk,B}
mm	kNm/m			l/m		kN/m			n/m				l/m	
0,75	13,63	5,95	6,74	4,05	4,94		11,95	6,16	11,82	7,58	10,83	10,64	15,56	14,38
0,88	17,39	8,88	9,88	6,22	7,56		15,01	9,11	15,88	11,04	16,76	15,69	22,91	20,63
1,00	20,86	11,59	12,78	8,23	9,98	10-11-	17,83	11,83	19,63	14,23	22,24	20,35	29,70	26,39
1,13	25,27	15,91	17,55	11,58	14,22	n.m.	22,39	16,24	25,39	19,78	32,04	27,74	43,66	36,06
1,25	29,34	19,90	21,96	14,68	18,13		26,61	20,32	30,70	24,91	41,08	34,56	56,54	44,99
1,50	35,41	24,01	26,50	17,72	21,88		32,11	24,52	37,05	30,05	49,57	41,70	68,23	54,29

Reststützmomente 8)

	l _{a,l}	= 60 mm		l _{a,t}	= 200 mm		Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	
0,75	15,66	16,65	1,60	13,07	14,21	2,14	$M_{R,Rk} = 0$ für $L \le min L$
0,88	13,55	14,56	2,50	11,56	12,72	3,23	
1,00	11,60	12,63	3,32	10,17	11,35	4,23	$M_{RRk} = \frac{L - \min L}{\max M_{RRk}} \cdot \max M_{RRk}$
1,13	10,50	11,54	4,58	9,13	10,33	5,88	$M_{R,Rk} = \frac{L - min L}{max L - min L} \cdot max M_{R,Rk}$
1,25	9,48	10,53	5,74	8,18	9,40	7,41	
1,50	9,48	10,53	6,93	8,18	9,40	8,94	M _{R,Rk} = max M _{R,k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-		Ve	rbindung	g in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		M/V	- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,8}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	12,83	8,68	-	12,80	-	-	8,68	4,34	-	6,40	-	-	4,34
0,88	16,40	13,99	-	17,13	-	-	13,99	7,00	-	8,56	-	-	7,00
1,00	19,46	20,35	-	20,62	-	-	20,35	10,17	-	10,31	-	-	10,17
1,13	22,59	29,10	-	24,32	-		29,10	14,55	-	12,16	-	-	14,55
1,25	25,38	39,03	-	27,83	_	-	39,03	19,51	-	13,92	-	-	19,51
1,50	31,24	66,21	-	35,83	-	-	66,21	33,10	-	17,92	14	-	33,10

SAB 200R/840 P5L

Anlage 1.45.1 zum Prüfbescheid

ALS TYPENENTWURF

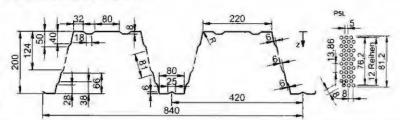
in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

FREISTAAT

Leiter:


Bearbeiter:

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

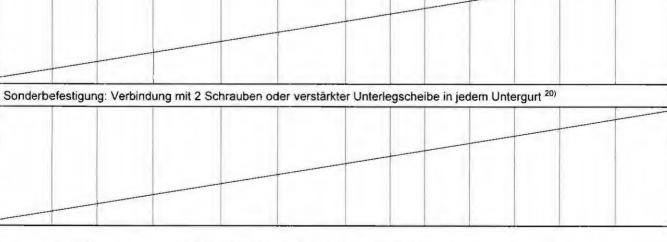
Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f_{y,k} =

320 N/mm²


Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing 11)		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I+ eff	I-	Ag	ig	Z _g	A _{eff}	i _{eff}	Zeff	L _{gr}	Lgr
mm	kN/m²	cm ⁴	⁴/m	cm²/m	cr	n	cm ² /m cm		n		m
0,75	0,107	633	676	10,46	8,04	7,83	3,74	8,25	8,05	•	-
0,88	0,126	757	800	12,38	8,04	7,83	4,83	8,22	7,94	8,83	8,83
1,00	0,143	873	914	14,14	8,04	7,83	5,87	8,18	7,80	11,78	11,78
1,13	0,161	1001	1037	16,06	8,04	7,83	7,00	8,14	7,73	13,36	13,36
1,25	0,179	1120	1151	17,82	8,04	7,83	8,08	8,11	7,67	14,81	14,81
1,50	0,214	1371	1389	21,50	8,04	7,83	10,50	8,05	7,58	15,53	15,53

Schubfeldwerte

	G	renzzuetani	d der Gebrau	chetaualick	koit 17)		G	renzzus	tand der	Tragfäh	igkeit 18)	
	G	CHZZUSIANI	dei Gebiad	cristaugher	IKEIL						_asteinleitu	ing
L _N	Т	K, 14) 15)	K 14) 15)	K*, 15)	K*, 15)	T 16)	16)	Т	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	1.1	2	** 1	7 2	Rk,g	-R	Rki	1,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10-4 · m ² /kN	10⁴·1/kN	10-4 · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN

Normalbefestigung: Verbindung in jedem Untergurt

 a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)". (Klasse 2 nach DIN EN 508-1:2014)

SAB 200R/840 P5L

Anlage 1,45.2 zum Prüfbescheid
ALS TYPENENTWURF

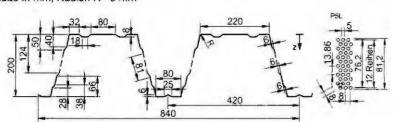
in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

FREISTAAT

Leiter:


Bearbeiter:

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f, =

320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

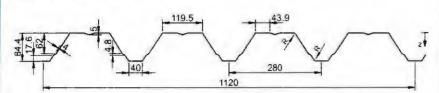
Nenn-	Feld-		Endaufla	gerkraft ⁶	5)	Elast	tisch aufi	nehmbar	e Schnitt	tgrößen a	an Zwisc	henaufla	gern ^{1) 2)}	4) 5) 7)
	moment		Liidaana	gondan		Quer-			Qua	dratisch	e Intera	ktion		
dicke						kraft		Stützm	omente		Zw	ischenau	ıflagerkr	äfte
		I _{a,A1} = 40 mm	I _{a,A2} = 90 mm	I _{a,A1} = 40 mm	I _{a.A2} = 90 mm		l _{a,B} = 6	60 mm	I _{a.B} = 2	00 mm	I _{a,8} = 6	0 mm	I _{a B} = 2	00 mm
t _N	M _{c,Rk,F}	R _{T,v}	v,Rk,A	R _{G,v}	v,Rk,A	V _{w,Rk}	M ⁰ Rk,B	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,8}	R ⁰ _{Rk,B}	R _{w,Rk,B}	Rº Rk,B	R _{w,Rk,B}
mm	kNm/m			l/m		kN/m		kNr	n/m			kN	l/m	
0,75	14,11	5,48	6,20	3,73	4,54	6,59	11,95	6,16	11,82	7,58	9,97	9,79	14,32	13,23
0,88	18,45	8,17	9,09	5,73	6,96	10,53	15,01	9,11	15,88	11,04	15,42	14,44	21,08	18,98
1,00	22,48	10,66	11,75	7,57	9,18	15,29	17,83	11,83	19,63	14,23	20,46	18,72	27,32	24,28
1,13	26,65	14,64	16,15	10,66	13,08	21,82	22,39	16,24	25,39	19,78	29,48	25,52	40,17	33,18
1,25	30,54	18,30	20,20	13,51	16,68	29,23	26,61	20,32	30,70	24,91	37,80	31,79	52,02	41,39
1,50	39,72	22,09	24,38	16,30	20,13	49,58	32,11	24,52	37,05	30,05	45,61	38,36	62,77	49,95

Reststützmomente 8)

	l _{a,t}	= 60 mm	1	l _{a,t}	= 200 mm	1	Reststützmomente M _{R.Rk}	
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}		
mm	m	m	kNm/m	m	m	kNm/m		
							M _{R,Rk} = 0 für L≤min I	L
							I may be	
							1 - min I	
							$M_{R,Rk} = \frac{E - min L}{max L - min L} \cdot max N$	R,Rk
							$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M$	R,Rk

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 112)

Nenn-	Feldmo-	Ve	rbindung	j in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	iurt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	13,86	6,59	-	14,11	-	-	6,59	3,30	-	7,06	-	-	3,30
0,88	17,80	10,53	-	18,45	_	-	10,53	5,27	-	9,22	-	- 1	5,27
1,00	21,32	15,29	l let	22,48	-		15,29	7,65	-	11,24	-	-	7,65
1,13	25,11	21,82	(4)	26,65	-	-	21,82	10,91	-	13,32	4	-	10,91
1,25	28,27	29,23	-	30,54	-	-	29,23	14,62	-	15,27	-	-	14,62
1,50	34,76	49,58	_	39,72	-	-	49,58	24,79	-	19,86	-	-	24,79


SAB 85R/1120 (Niederaula)

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Anlage 2.1.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Leipzig Iden 05.08.2025 Leiter: / SACHSEN Bearbeiter:

S350GD

Nennstreckgrenze des Stahlkernes f

350 N/mm²

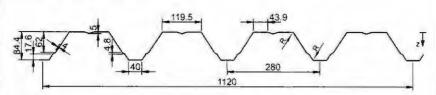
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegi	ung ¹¹⁾		Norr	nalkraftbe	anspruchu	ng		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	* eff	I- err	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	¹/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,080	88,97	90,65	9,33	3,18	3,36	3,96	3,69	3,69	3,50	4,35
0,88	0,094	108,57	110,66	11,03	3,18	3,36	5,15	3,68	3,68	5,00	6,25
1,00	0,107	127,16	127,27	12,61	3,18	3,36	6,44	3,65	3,63	5,40	6,75
1,25	0,134	160,37	160,37	15,89	3,18	3,36	9,45	3,58	3,54	6,05	7,56
1,50	0,161	193,45	193,45	19,17	3,18	3,36	12,62	3,49	3,44	6,65	8,30

Schubfeldwerte

	G.	onzzuetone	d der Gebrau	chetaualiek	kait 17)		(Grenzzus	tand der	Tragfähi	gkeit 18)	
	Gi	enzzustant	der Gebrau	ichstaughei	IKEIL						asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	- b,Ck	11	. 2	'` 1	2	* Rk,g	-R	Rkil	* *3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10-4 · m²/kN	10-4 · 1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ıg: Verbindı	ung in jedem	Untergurt								
0,75	3,07	0,228	18,520	3,125	1,960	6,27	6,88	29,46	0,416	3,38	12,17	14,86
0,88	4,68	0,193	12,164	3,125	1,960	7,79	7,00	48,78	0,453	4,35	14,40	17,58
1,00	6,53	0,169	8,712	3,125	1,960	9,51	7,00	72,81	0,484	5,31	16,46	20,09
1,25	11,65	0,134	4,885	3,125	1,960	13,46	7,00	105,88	0,544	7,52	20,75	25,32
1,50	18,63	0,111	3,054	3,125	1,960	17,83	7,00	127,75	0,597	9,96	25,03	30,55
	efestigur	ng: Verbinde	ung mit 2 Sc	,	er verstärkte	,		ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	3,00	0,228	12,021	3,125	0,980	6,27	6,88	29,46	0,576	8,22	12,17	14,86
0,88	4,56	0,193	7,896	3,125	0,980	7,79	7,00	48,78	0,576	10,58	14,40	17,58
1,00	6,37	0,169	5,655	3,125	0,980	9,51	7,00	72,81	0,576	12,92	16,46	20,09
	11,36	0,134	3,171	3,125	0,980	13,46	7,00	105,88	0,576	18,29	20,75	25,32
1,25							7,00	The state of the s	0,576	24,24		

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
 (Klasse 2 nach DIN EN 508-1:2014)


SAB 85R/1120 (Niederaula)

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Anlage 2.1.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig den 05.08/2025 Leiter: FREISIA Bearbeiter:

S350GD

Nennstreckgrenze des Stahlkernes f_{vk} = 350 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

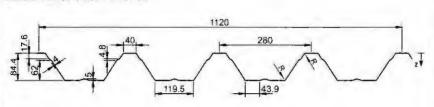
Nenn-	Feldmo-				E	Elastis	ch aufr	nehmb	are Sc	hnittgr	ößen an	Zwische	nauflage	ern ^{1) 2) 4)}	5) 7)	
blech-	ment	End	lauf- kraft ⁶⁾	Quer-						Line	eare Inte	eraktion				
dicke		lagen	tiait '	kraft		5	Stützm	oment	е			Zw	ischenau	uflagerkr	äfte	
			_{a2} = 40 mm		1 _{a,B} = 1	0 mm	l _{aB} = 6	60 mm	l _{a,B} = 1	60 mm	l _{a 8} = 1	0 mm	I _{a,8} = 6	60 mm	I _{a,B} = 16	30 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,8}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNr	m/m						l/m		
0,75	5,915	5,85	8,86		6,89	5,51	6,89	5,51	6,89	5,51	14,61	11,69	25,52	20,42	37,19	29,75
0,88	7,766	8,30	12,41		8,78	7,02	8,78	7,02	8,78	7,02	20,76	16,61	35,62	28,50	51,52	41,22
1,00	9,251	10,93	16,14	n.m.	10,35	8,28	10,35	8,28	10,35	8,28	27,32	21,85	46,21	36,97	66,43	53,14
1,25	12,630	17,46	25,29		13,71	10,97	13,71	10,97	13,71	10,97	43,64	34,91	72,01	57,61	102,36	81,89
1,50	16,059	25,40	36,21		16,64	13,31	16,64	13,31	16,64	13,31	63,50	50,80	102,7	82,12	144,54	115,63

Reststützmomente 8)

	l _{a,i}	_B = 10 m	m	1,	= 60 m	ım	l _{a.E}	= 160 m	ım	Reststützmomente M _{R.Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										M _{R.Rk} = L - min L max L - min L
										max L - min L
										M _{R,Rk} = max M _{R,Rk} für L≥ max l

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	2 /4/2 6/2 4/2 6/2	Ve	erbindun	g in jeder	n anlieg	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	$R_{w,Rk,A}$	M ⁰ Rk,B	M _{c,Rk,B}	$R^0_{Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	5,509	35,02	-	5,915	-	-	35,02	17,51	-	2,957	-	-	17,51
0,88	7,025	56,35	-	7,766	-	-	56,35	28,18		3,883		-	28,18
1,00	8,278	75,41	-	9,251	-	-	75,41	37,71	-	4,625	-	-	37,71
1,25	10,970	117,67	-	12,630	-	-	117,67	58,84	-	6,315	-	-	58,84
1,50	13,315	169,00	-	16,059	-	-	169,00	84,50	-	8,029	-	_	84,50


SAB 85R/1120 (Niederaula)

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Anlage 2.1.3 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: SACHSEN Bearbeiter:

S350GD

Nennstreckgrenze des Stahlkernes f, =

350 N/mm²

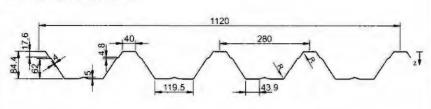
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ang ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksame	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	i ⁺ eff	l- _{ett}	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	ı⁴/m	cm²/m	cr	n	cm²/m	cr	n		n
0,75	0,080	90,65	88,97	9,33	3,18	5,08	3,96	3,69	4,75	3,95	4,94
0,88	0,094	110,66	108,57	11,03	3,18	5,08	5,15	3,68	4,76	5,00	6,25
1,00	0,107	127,27	127,16	12,61	3,18	5,08	6,44	3,65	4,81	5,40	6,75
1,25	0,134	160,37	160,37	15,89	3,18	5,08	9,45	3,58	4,90	6,05	7,56
1,50	0,161	193,45	193,45	19,17	3,18	5,08	12,62	3,49	5,00	6,65	8,30

Schubfeldwerte

	G	conzzuetano	d der Gebrau	chetaualich	kojt 17)		(Grenzzus	tand der	Tragfähi	gkeit 18)	
	01	CHEZUSIANI	dei Gebiat	ichstauglici	IKEIL .					l	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, ¹⁵⁾	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	**1	2		1 2	'Rk,g	¬R	' Rk,I	, ,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m²/kN	10 ⁻⁴ · 1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	4	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	2,61	0,228	28,672	3,125	1,960	6,73	6,64	29,46	0,236	4,60	18,88	18,88
0,88	3,98	0,193	18,832	3,125	1,960	7,79	7,00	48,78	0,257	5,92	22,34	22,34
1,00	5,56	0,169	13,487	3,125	1,960	9,51	7,00	72,81	0,274	7,24	25,53	25,53
1,25	9,91	0,134	7,562	3,125	1,960	13,46	7,00	105,88	0,308	10,24	32,18	32,18
1,50	15,85	0,111	4,728	3,125	1,960	17,83	7,00	127,75	0,338	13,57	38,83	38,83
Sonderb	efestigur	ng: Verbindi	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	rgurt ²⁰⁾		
0,75	18,55	0,228	0,650	3,125	0,980	6,73	6,64	29,46	0,702	21,60	18,88	18,88
0,88	28,25	0,193	0,427	3,125	0,980	7,79	7,00	48,78	0,702	27,79	22,34	22,34
1,00	39,44	0,169	0,306	3,125	0,980	9,51	7,00	72,81	0,702	33,96	25,53	25,53
	70,34	0,134	0,171	3,125	0,980	13,46	7,00	105,88	0,702	48,05	32,18	32,18
1,25	,											

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)". (Klasse 2 nach DIN EN 508-1:2014)


SAB 85R/1120 (Niederaula)

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Anlage 2.1.4 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

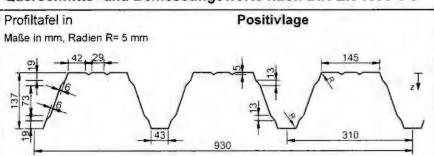
Landesstelle für Bautechnik Leipzig, den 05:08:2025 ter: FREISTAAT Bearbeiter:

Nennstreckgrenze des Stahlkernes f., = 350 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				E	Elastis	ch aufi	nehmb	are Sc	hnittgr	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	End	auf-	Quer-												
dicke		lagen	kraft ⁶⁾	kraft			Stützm	oment	е			Zw	ischena	uflagerkr	äfte	
		l _{a1} = 10 mm	_{a2} = 40 mm		l _{a,B} = 1	0 mm	I _{a,B} = 6	60 mm	 _{a,B} = 1	60 mm	I _{a,B} = 1	0 mm	I _{a,B} = 6	60 mm	I _{a,B} = 16	60 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	$V_{w,Rk}$	M ⁰ _{Rk,B}	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	M° Rk,B	M _{c,Rk,B}	R ⁰ _{RK,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
-	kNm/m		/m	kN/m			kNr	n/m					kN	l/m		
0,75	5,509	4,51	6,83		7,39	5,91	7,39	5,91	7,39	5,91	11,28	9,02	19,69	15,75	28,69	22,95
0,88	7,025	6,29	9,39		9,71	7,77	9,71	7,77	9,71	7,77	15,71	12,57	26,96	21,57	39,00	31,20
1,00	8,278	8,18	12,09	n.m.	11,56	9,25	11,56	9,25	11,56	9,25	20,46	16,36	34,60	27,68	49,74	39,79
1,25	10,970	12,96	18,77		15,79	12,63	15,79	12,63	15,79	12,63	32,39	25,91	53,44	42,75	75,96	60,77
1,50	13,315	18,90	26,94		20,07	16,06	20,07	16,06	20,07	16,06	47,24	37,79	76,37	61,10	107,53	86,02

Reststützmomente 8)


	I _{a,8} = 10 mm			I _{a,B} = 60 mm			I _{a.8} = 160 mm			Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										L – min L
						+				$M_{RRk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{r}$
										M S man M has I have so
										M _{R,Rk} = max M _{R,Rk} für L≥ ma

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-		Ve	erbindun	g in jeder	n anlieg	enden Gu	Verbindung in jedem 2. anliegenden Gurt							
blech- dicke		Endauf- lagerkraft	M/V- Interaktion					Endauf- lagerkraft	M/V- Interaktion					
t _N	M _{c,Rk,F}	$R_{w,Rk,A}$	M° Rk,8	M _{c,Rk,B}	R° Rk,8	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M° RK,B	M _{c,Rk,B}	R° Rk,B	R _{w,Rk,B}	$V_{w,Rk}$	
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	
0,75	5,915	35,02	-	5,509	100	-	35,02	17,51	-	2,754	-	-	17,51	
0,88	7,766	56,35	_	7,025	-	-	56,35	28,18	-	3,512		-	28,18	
1,00	9,251	75,41	-	8,278	-	-	75,41	37,71	(u	4,139	W. 1	-	37,71	
1,25	12,630	117,67	_	10,970	4	-	117,67	58,84	-	5,485	-	-	58,84	
1,50	16,059	169,00	-	13,315	- 1	-	169,00	84,50	_	6,657	_	_	84,50	

SAB 135R/930

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 2.2.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05:08:2025 eiter: FREISTAAL Bearbeiter:

S350GD

Nennstreckgrenze des Stahlkernes f = 350

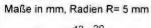
350 N/mm²

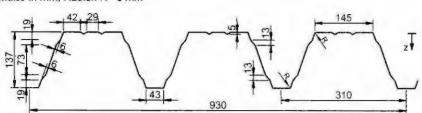
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegung ¹¹⁾			Grenzstützweiten 13)						
blech- dicke a)				nicht reduzierter Querschnitt			wirksamer Querschnitt 12)			Einfeld- träger	Mehrfeld- träger
		I+ eff	I- eff	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	Lgr
mm	kN/m²	cm	4/m	cm²/m	cr	n	cm²/m	cm		1	m
0,75	0,097	285,6	276,0	11,29	5,03	5,37	3,94	5,91	5,77	5,50	6,85
0,88	0,114	337,8	335,2	13,36	5,03	5,37	5,15	5,87	5,77	9,00	11,25
1,00	0,129	386,1	386,1	15,27	5,03	5,37	6,36	5,84	5,78	10,29	12,85
1,13	0,146	438,3	438,3	17,33	5,03	5,37	7,72	5,82	5,78	11,68	14,60
1,25	0,161	486,4	486,4	19,24	5,03	5,37	9,05	5,80	5,78	12,96	16,20
1,50	0,194	586,7	586,7	23,21	5,03	5,37	11,85	5,72	5,76	15,65	19,55

Schubfeldwerte

		ronzzuoton	d der Gebrau	abata valiah	oleait 17)	Grenzzustand der Tragfähigkeit 18)								
	G	renzzustani	dei Gebiau	cristaugher	ikeit .						asteinleitu	ing		
t,	T _{b,Ck}	K, 14) 15)	K ₂ ^{14) 15)}	K*, ¹⁵⁾	K* ₂ ¹⁵⁾	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,i}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥		
	, p'CK	1.4	2	1		* Rk,g	-R	Rk,I	1.43		130 mm	280 mr		
mm	kN/m	10⁴·m/kN	10-4 · m²/kN	10 ⁻⁴ ·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN		
Normalt	efestigur	ng: Verbind	ung in jedem	Untergurt										
0,75	1,65	0,274	55,59	3,763	2,170	13,29	7,00	18,70	0,512	2,77	12,17	16,20		
0,88	2,51	0,232	36,51	3,763	2,170	17,10	7,00	30,97	0,557	3,57	14,40	19,16		
1,00	3,51	0,203	26,15	3,763	2,170	20,89	7,00	46,23	0,595	4,36	16,46	21,90		
1,13	4,82	0,179	19,04	3,763	2,170	25,26	7,00	67,68	0,634	5,27	18,69	24,87		
1,25	6,26	0,161	14,66	3,763	2,170	29,54	7,00	92,58	0,668	6,17	20,75	27,61		
1,50	10,00	0,133	9,167	3,763	2,170	39,15	7,00	127,8	0,734	8,17	25,03	33,31		
Sonderb	efestigu	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	egschei	ibe in jed	lem Unte	ergurt ²⁰⁾				
0,75	1,58	0,274	40,60	3,763	1,085	13,29	7,00	18,70	0,791	6,17	12,17	16,20		
0,88	2,40	0,232	26,67	3,763	1,085	17,10	7,00	30,97	0,791	7,95	14,40	19,16		
1,00	3,36	0,203	19,10	3,763	1,085	20,89	7,00	46,23	0,791	9,71	16,46	21,90		
1,13	4,61	0,179	13,90	3,763	1,085	25,26	7,00	67,68	0,791	11,74	18,69	24,87		
1,25	5,98	0,161	10,71	3,763	1,085	29,54	7,00	92,58	0,791	13,74	20,75	27,61		
1,50	9,57	0,133	6,696	3,763	1,085	39,15	7,00	127,8	0,791	18,21	25,03	33,31		


a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 135R/930

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Landesstelle für Bautechnik Leipzig, den 05.08.2025 FREISTAAT Bearbeiter

Anlage 2.2.2 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Leiter: SACHSEN

Nennstreckgrenze des Stahlkernes f =

350 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

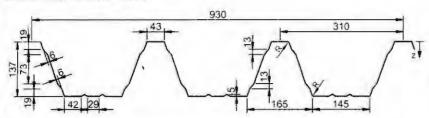
Nenn-	Feldmo-		Endaufla	gerkraft ⁶	5)	Elastisch aufnehmbare Schnittgrößen an Zwischenauflagern 1) 2) 4) 5) 7)										
blech-	ment			goman		Quer-			Qua	dratisch	e Intera	ktion				
dicke						kraft		Stützm	omente		Zw	rischenau	ıflagerkr	äfte		
		I _{a,A1} = 40 mm	I _{a.A2} = 90 mm	I _{a.A1} = 40 mm	1 _{a,AZ} = 90 mm		I _{a,B} = 6	0 mm	= 10	60 mm	I _{a.8} = 6	60 mm	I _{a.8} = 16	60 mm		
t _N	M _{c,Rk,F}	R _{T,w,Rk,A} R _{G,w,Rk,A}			V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	Rº RK,B	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}			
mm	kNm/m			l/m		kN/m	kNm/m					kN/m				
0,75	9,87	8,95	10,91	8,95	10,91		10,56	7,80	12,68	9,55	20,31	17,60	25,63	22,04		
0,88	12,59	12,29	15,61	12,29	15,61		14,62	10,88	16,98	13,09	28,70	24,78	36,58	31,12		
1,00	15,10	15,65	19,96	15,65	19,96		18,36	13,72	20,96	16,38	36,42	31,40	46,68	39,52		
1,13	17,80	20,19	25,16	20,19	25,16	n.m.	20,85	15,58	23,80	18,59	41,33	35,64	52,99	44,88		
1,25	20,50	24,68	24,68	24,68	24,68		23,14	17,30	26,42	20,63	45,90	39,56	58,81	49,81		
1,50	25,45	35,29	35,29	35,29	35,29		27,93	20,87	31,88	24,90	55,35	47,74	70,38	60,11		

Reststützmomente 8)

	l _{a,}	_B = 60 mm		l _{a.8}	= 160 mm		Reststützmomente M _{R,Rk}				
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}					
mm	m	m	kNm/m	m	m	kNm/m					
0,75	5,22	5,94	2,46	4,25	5,01	3,01	M _{R,Rk} = 0 für L≤min l	L			
0,88	5,16	5,88	3,17	4,70	5,44	3,48					
1,00	5,12	5,85	3,83	5,01	5,74	3,91	$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M$				
1,13	5,12	5,85	4,35	5,01	5,74	4,44	$M_{R,Rk} = \frac{L - min L}{max L - min L} \cdot max M$	R.Rk			
1,25	5,12	5,85	4,82	5,01	5,74	4,93					
1,50	5,12	5,85	5,83	5,01	5,74	5,95	M _{R.Rk} = max M _{R.k} für L ≥ max	L			

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn- blech- dicke	Feldmo- ment	Ve	erbindung	g in jeden	n anlieg	enden Gu	Verbindung in jedem 2. anliegenden Gurt							
		Endauf- lagerkraft	M/V- Interaktion					Endauf- lagerkraft	M/V- Interaktion					
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,8}	M _{c,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	
0,75	8,67	28,42	-	9,90	-	114.	28,42	14,21	-	4,95	-	-	14,21	
0,88	11,43	45,33	-	12,63	L	-	45,33	22,66		6,32	-	-	22,66	
1,00	14,16	65,76	-	15,24	-	-	65,76	32,88	-	7,62	-	-	32,88	
1,13	17,15	93,79	-	18,16	-	-	93,79	46,90	-	9,08	-	-	46,90	
1,25	19,96	125,68	-	20,93	-	-)	125,68	62,84	-	10,46	-	-	62,84	
1,50	24,65	181,01	-	26,14		-	181,01	90,50	-	13,07	-	-	90,50	
												10 9		


SAB 135R/930

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f., = 350 N/mm²

Anlage 2.2.3 zum Prüfbescheid **ALS TYPENENTWURF** in baustatischer Hinsicht geprüft.

Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik Leipzig, den 05.08.2025

Bearbeiter: Leiter: SACHSEN

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ung ¹¹⁾		Norr	nalkraftbe	anspruchu	ing	- 11	Grenzstü	tzweiten 13)
blech- dicke				nicht redu.	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	f* _{eff}	l- _{eff}	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	ı⁴/m	cm²/m cm cm		cm²/m	cr	n		m	
0,75	0,097	276,0	285,6	11,29	5,03	8,33	3,94	5,91	7,93	5,95	7,40
0,88	0,114	335,2	337,8	13,36	5,03	8,33	5,15	5,87	7,93	7,80	9,75
1,00	0,129	386,1	386,1	15,27	5,03	8,33	6,36	5,84	7,92	9,60	12,00
1,13	0,146	438,3	438,3	17,33	5,03	8,33	7,72	5,82	7,92	10,25	12,80
1,25	0,161	486,4	486,4	19,24	5,03	8,33	9,05	5,80	7,92	10,80	13,50
1,50	0,194	586,7	586,7	23,21	5,03	8,33	11,85	5,72	7,94	11,85	14,80

Schubfeldwerte

	G.	onzzuetone	d der Gebrau	obetovalist	skait 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	enzzustano	dei Gebrau	ichstaugher	ikeit '					l	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K ₃ ^{14) 15)}	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	11	1 2	,, 1	. 2	*Rk,g	-R	* Rk,I	1,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10-4 · m²/kN	10⁴ ·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ıg: Verbindu	ung in jedem	Untergurt								
0,75	1,48	0,274	77,79	3,763	2,170	13,29	7,00	18,70	0,253	4,02	18,88	18,88
0,88	2,25	0,232	51,09	3,763	2,170	17,10	7,00	30,97	0,275	5,17	22,34	22,34
1,00	3,14	0,203	36,59	3,763	2,170	20,89	7,00	46,23	0,294	6,31	25,53	25,53
1,13	4,31	0,179	26,64	3,763	2,170	25,26	7,00	67,68	0,313	7,64	28,99	28,99
1,25	5,60	0,161	20,52	3,763	2,170	29,54	7,00	92,58	0,330	8,93	32,18	32,18
1,50	8,95	0,133	12,83	3,763	2,170	39,15	7,00	127,8	0,363	11,84	38,83	38,83
Sonderb	efestigur	ng: Verbindu	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	egsche	ibe in jed	dem Unte	ergurt ²⁰⁾		
0,75	11,34	0,274	1,676	3,763	1,085	13,29	7,00	18,70	1,036	18,66	18,88	18,88
0,88	17,27	0,232	1,101	3,763	1,085	17,10	7,00	30,97	1,036	24,02	22,34	22,34
1,00	24,11	0,203	0,788	3,763	1,085	20,89	7,00	46,23	1,036	29,35	25,53	25,53
1,13	33,12	0,179	0,574	3,763	1,085	25,26	7,00	67,68	1,036	35,50	28,99	28,99
1,25	43,00	0,161	0,442	3,763	1,085	29,54	7,00	92,58	1,036	41,53	32,18	32,18
1,50	68,76	0,133	0,276	3,763	1,085	39,15	7,00	127,8	1,036	55,04	38,83	38,83

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".

SAB 135R/930

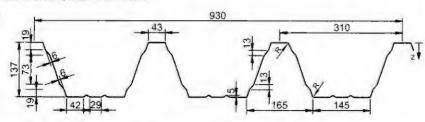
Anlage 2.2.4 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter:


Bearbeiter:

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f_{y,k} =

350 N/mm²

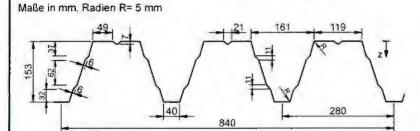
Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				ŀ	Elastis	ch aufr	nehmb	are Sc	hnittgrö	ißen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	End	lauf- kraft ⁶⁾	Quer-						Line	are Inte	raktion				
dicke		layen	Krait -	kraft		5	Stützm	oment	е			Zw	ischenau	ıflagerkr	äfte	
t _N M			I _{a2} = 40 mm		I _{a,B} = 1	0 mm	I _{a,B} = 6	0 mm	I _{a,B} = 16	60 mm	l _{a,8} = 1	0 mm	i _{a.B} = 6	0 mm	l _{a.B} = 16	60 mm
t _N	M _{c,Rk,F}	R _w	,Rk,A	V _{w,Rk}	Mº Rk,B	M _{c,Rk,B}	M° Rk,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,8}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNr	n/m					kN	l/m		
0,75	8,67	4,71	7,13		12,37	9,90	12,37	9,90	12,37	9,90	11,77	9,42	20,56	16,44	29,95	23,96
0,88	11,43	6,66	9,95		15,79	12,63	15,79	12,63	15,79	12,63	16,65	13,32	28,57	22,86	41,32	33,06
1,00	14,16	8,82	13,03		19,05	15,24	19,05	15,24	19,05	15,24	22,04	17,64	37,29	29,83	53,60	42,88
1,13	17,15	11,58	16,93	n.m.	22,69	18,16	22,69	18,16	22,69	18,16	28,95	23,16	48,32	38,65	69,03	55,23
1,25	19,96	14,57	21,10		26,16	20,93	26,16	20,93	26,16	20,93	36,42	29,14	60,10	48,08	85,42	68,34
1,50	24,65	22,34	31,84		32,67	26,14	32,67	26,14	32,67	26,14	55,85	44,68	90,28	72,23	127,11	101,69

Reststützmomente 8)

4	l _{a,}	_B = 10 m	m	l _{a,t}	= 60 m	m	l _{a,l}	_B = 160 m	im	Reststützmomente M _{R,Rk}
T _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										L – min L
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
										M = max M für l > max l
										M _{R,Rk} = max M _{R,k} für L≥n

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)


Nenn-	Feldmo-	Ve	rbindung	g in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	$R_{w,Rk,A}$	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,8}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	9,90	28,42	-	8,67	-	-	28,42	14,21	-	4,34	-	-	14,21
0,88	12,63	45,33	-	11,43	-	-	45,33	22,66	-	5,71	-	-	22,66
1,00	15,24	65,76	-	14,16	_	-	65,76	32,88	-	7,08	-	-	32,88
1,13	18,16	93,79	-	17,15	_	-	93,79	46,90	_	8,58	-	200	46,90
1,25	20,93	125,68	-	19,96	-	-	125,68	62,84	-	9,98	-	- 1	62,84
1,50	26,14	181,01	-	24,65	_	_	181,01	90,50	-	12,33	-	_	90,50

SAB 153R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Leiter:

Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 eiter: Bearbeiter:

Anlage 2.3.1 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft.

5350

Nennstreckgrenze des Stahlkernes f_{vk} =

350 N/mm²

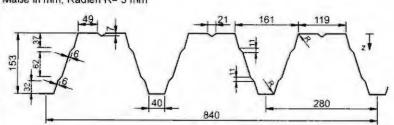
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	9	I ⁺ eff	I- eff	A _g	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	4/m	cm²/m			cm²/m	cr	n		m
0,75	0,107	375,0	364,8	12,53	5,45	6,39	5,00	6,26	6,85	8,00	10,00
0,88	0,126	434,0	439,5	14,82	5,45	6,39	6,74	6,21	6,81	10,58	13,20
1,00	0,143	489,0	502,1	16,94	5,44	6,39	8,51	6,17	6,78	12,09	15,10
1,13	0,161	570,0	570,0	19,23	5,44	6,39	10,50	6,12	6,73	13,73	17,15
1,25	0,179	632,5	632,5	21,34	5,44	6,39	12,40	6,08	6,69	15,24	19,05
1,50	0,214	762,8	762,8	25,75	5,44	6,39	16,33	5,97	6,57	18,39	22,95

Schubfeldwerte

	G.	conzzuetone	f der Gebrau	obetovalick	toit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	enzzustand	i dei Gebiad	icristaugiici	IKEIL ,						asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K _s ^{14) 15)}	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} ²¹⁾	füra≥
	- b,Ck	'1	2	. 1	2	' Rk,g	-R	Rk,I	. 3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m ² /kN	10-4 · 1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	_	kN/m	kN	kN
Normalb	efestigur	ng: Verbindu	ung in jedem	Untergurt								
0,75	2,05	0,304	53,674	4,167	1,960	12,08	8,00	15,54	0,675	2,87	12,17	16,20
0,88	3,13	0,257	35,255	4,167	1,960	15,54	8,00	25,73	0,734	3,69	14,40	19,16
1,00	4,36	0,225	25,249	4,167	1,960	18,98	8,00	38,41	0,785	4,51	16,46	21,90
1,13	6,00	0,198	18,380	4,167	1,960	22,96	8,00	56,23	0,836	5,45	18,69	24,87
1,25	7,78	0,178	14,156	4,167	1,960	26,85	8,00	76,92	0,881	6,38	20,75	27,61
1,50	12,45	0,148	8,852	4,167	1,960	35,57	8,00	127,8	0,968	8,45	25,03	33,31
Sonderb	efestigur	ng: Verbindu	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gschei	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,98	0,304	32,778	4,167	0,980	12,08	8,00	15,54	1,038	7,09	12,17	16,20
0,88	3,02	0,257	21,529	4,167	0,980	15,54	8,00	25,73	1,038	9,13	14,40	19,16
1,00	4,22	0,225	15,419	4,167	0,980	18,98	8,00	38,41	1,038	11,15	16,46	21,90
1,13	5,79	0,198	11,224	4,167	0,980	22,96	8,00	56,23	1,038	13,49	18,69	24,87
1,25	7,52	0,178	8,645	4,167	0,980	26,85	8,00	76,92	1,038	15,78	20,75	27,61
1,50	12,03	0,148	5,406	4,167	0,980	35,57	8,00	127,8	1,038	20,92	25,03	33,31

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 153R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f_{y,k} = 350 N/mm²

Anlage 2.3.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

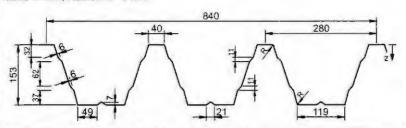
Nenn-	Feldmo-		Endaufla	gerkraft ⁽	5)	Elast	tisch aufi	nehmbar	e Schnit	tgrößen a	an Zwisc	henaufla	gern ^{1) 2)}	4) 5) 7)
blech- dicke	ment			901111411		Quer-			Qua	dratisch	e Interal	ktion		
uicke						kraft		Stützm	omente		Zw	ischenau	ıflagerkr	äfte
		l _{a,A1} = 40 mm	l _{a,A2} = 90 mm	l _{a.A1} = 40 mm	l _{a.A2} = 90 mm		I _{a,B} = 6	60 mm	I _{a,B} = 1	60 mm	I _{a,B} = 6	60 mm	I _{a B} = 16	60 mm
t _N	M _{c,Rk,F}	R _{T,v}	v,Rk,A	R _{G,s}	v,Rk,A	V _{w,Rk}	M ⁰ Rk,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m			l/m		kN/m		kNr	n/m			_	/m	
0,75	15,21	10,11	11,76	9,09	11,61		13,04	8,94	13,33	11,13	17,69	15,97	30,36	25,62
0,88	18,99	14,32	16,97	13,08	16,48		18,02	12,43	18,89	15,73	24,79	22,35	42,71	36,08
1,00	22,50	18,20	21,79	16,78	20,99		22,63	15,66	24,01	19,98	31,33	28,24	54,07	45,72
1,13	25,54	20,67	24,74	19,04	23,83	n.m.	25,70	17,77	27,26	22,67	35,56	32,06	61,41	51,91
1,25	28,35	22,93	27,47	21,15	26,46		28,52	19,72	30,31	25,17	39,49	35,60	68,24	57,62
1,50	34,21	27,67	33,15	25,51	31,93		34,41	23,80	36,52	30,37	47,63	42,95	82,26	69,54

Reststützmomente 8)

	l _{a,l}	_B = 60 mm		l _{a.f}	= 160 mm		Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	
0,75	8,92	9,59	2,14	6,61	7,31	2,91	M _{R,Rk} = 0 für L≤min L
0,88	8,09	8,77	2,96	5,78	6,49	4,16	
1,00	7,64	8,33	3,71	5,36	6,08	5,31	M - L - min L . mov M
1,13	7,64	8,33	4,21	5,36	6,08	6,03	$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
1,25	7,64	8,33	4,67	5,36	6,08	6,69	
1,50	7,64	8,33	5,65	5,36	6,08	8,08	M _{R,Rk} = max M _{R,k} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

	Feldmo-	Ve	rbindung	j in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	dicke	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ^o _{Rk,B}	M _{c,Rk,B}	$R^0_{Rk,B}$	R _{w,Rk,B}	V _{w,Rk}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	11,61	28,62	-	13,91	-	-	28,62	14,31	-	6,95	-	-	14,31
0,88	14,85	46,13	-	17,22		-	46,13	23,07	-	8,61		_	23,07
1,00	17,92	67,25	-	20,44	-	- 1	67,25	33,63	-	10,22	-	_	33,63
1,13	21,75	96,02	_	24,04	-	-	96,02	48,01	-	12,02		- 1	48,01
1,25	24,85	128,69		27,44	-	-	128,69	64,34	-	13,72	_	_	64,34
1,50	29,97	203,42	- 1	34,67	-	-	203,42	101,71	-	17,33	-	_	101,71


SAB 153R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Anlage 2.3.3 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Leipzig, den 05.08/2025 Leiterre Searbeiter:

S350GD

Nennstreckgrenze des Stahlkernes f, =

350 N/mm²

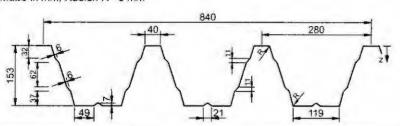
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ıng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I+ eff	l' _{eff}	 		A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}	
mm	kN/m²	cm	4/m	cm²/m			cm²/m	cr	n		m
0,75	0,107	364,8	375,0	12,53	5,45	8,91	5,00	6,26	8,45	7,45	9,30
0,88	0,126	439,5	434,0	14,82	5,45	8,91	6,74	6,21	8,49	9,45	11,80
1,00	0,143	502,1	489,0	16,94	5,44	8,91	8,51	6,17	8,52	10,70	13,35
1,13	0,161	570,0	570,0	19,23	5,44	8,91	10,50	6,12	8,57	11,40	14,25
1,25	0,179	632,5	632,5	21,34	5,44	8,91	12,40	6,08	8,61	12,00	15,00
1,50	0,214	762,8	762,8	25,75	5,44	8,91	16,33	5,97	8,73	13,20	16,50

Schubfeldwerte

	· ·		d der Gebrau	ahatawaliah	okait 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	enzzustant	i dei Gebiat	ichstauglici	ikeit "					1	asteinleitu	ıng
t _N	T _{b,Ck}	K, 14) 15)	K ₂ 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	* b,Ck	1,1	2		1 2	Rk.g	-R	Rk,I	, ,3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m ² /kN	10⁴ ·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	1,64	0,304	86,60	4,167	1,960	12,08	8,00	15,54	0,346	3,81	18,88	18,88
0,88	2,49	0,257	56,88	4,167	1,960	15,54	8,00	25,73	0,377	4,91	22,34	22,34
1,00	3,48	0,225	40,73	4,167	1,960	18,98	8,00	38,41	0,403	5,99	25,53	25,53
1,13	4,78	0,198	29,65	4,167	1,960	22,96	8,00	56,23	0,429	7,25	28,99	28,99
1,25	6,20	0,178	22,84	4,167	1,960	26,85	8,00	76,92	0,452	8,48	32,18	32,18
1,50	9,92	0,148	14,28	4,167	1,960	35,57	8,00	127,8	0,496	11,24	38,83	38,83
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gschei	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	11,82	0,304	1,849	4,167	0,980	12,08	8,00	15,54	1,265	19,52	18,88	18,88
0,88	18,00	0,257	1,214	4,167	0,980	15,54	8,00	25,73	1,265	25,12	22,34	22,34
1,00	25,13	0,225	0,870	4,167	0,980	18,98	8,00	38,41	1,265	30,69	25,53	25,53
1,13	34,52	0,198	0,633	4,167	0,980	22,96	8,00	56,23	1,265	37,13	28,99	28,99
1,25	44,83	0,178	0,488	4,167	0,980	26,85	8,00	76,92	1,265	43,43	32,18	32,18
1,50	71,69	0,148	0,305	4,167	0,980	35,57	8,00	127,8	1,265	57,56	38,83	38,83

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 153R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f_{y,k} = 350 N/mm²

Anlage 2.3.4 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05 08.2025 Leiter: FREISTAAT Bearbeiter:

S350GD

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

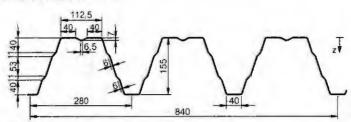
Nenn-	Feldmo-				1	Elastis	ch aufr	nehmb	are So	hnittgr	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	End	auf- craft ⁶⁾	Quer-						Line	eare Inte	eraktion				
dicke		lagen	trait "	kraft			Stützm	oment	е			Zw	ischenau	ıflagerkr	äfte	
		= 10 mm	l _{a2} = 40 mm		l _{a B} = 1	IO mm	I _{a.B} = 6	60 mm	l _{aB} = 1	60 mm	I _{a B} = 1	0 mm	l _{a B} = 6	0 mm	I _{s,B} = 16	60 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ^Q Rk,B	M _{c,Rk,B}	M ⁰ Rk, B	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN		kN/m			kNr	n/m					kN	l/m		
0,75	11,61	4,96	7,52		17,38	13,91	17,38	13,91	17,38	13,91	12,41	9,93	21,67	17,33	31,57	25,26
0,88	14,85	6,85	10,24		21,53	17,22	21,53	17,22	21,53	17,22	17,13	13,71	29,40	23,52	42,52	34,02
1,00	17,92	8,85	13,07		25,55	20,44	25,55	20,44	25,55	20,44	22,12	17,70	37,42	29,94	53,79	43,03
1,13	21,75	11,28	16,48	n.m.	30,05	24,04	30,05	24,04	30,05	24,04	28,19	22,55	47,05	37,64	67,22	53,78
1,25	24,85	13,76	19,94		34,30	27,44	34,30	27,44	34,30	27,44	34,41	27,53	56,78	45,42	80,70	64,56
1,50	29,97	19,69	28,06		43,33	34,67	43,33	34,67	43,33	34,67	49.22	39,37	79,56	63,65	112,03	89,62

Reststützmomente 8)

	l _a	_B = 10 m	m	l _{a,l}	_B = 60 m	m	l _{a, E}	_B = 160 m	ım	Reststützmomente M _{R,Rk}
E _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R.Rk} = 0 für L≤min L
										$M_{RRK} = \frac{L - \min L}{\max M_{RRK}} \cdot \max M_{RRK}$
				+						max L - min L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

	Feldmo-	Ve	Verbindung in jedem anliegenden Gurt Endauf- M/V- Interaktion	ırt	Ver	bindung	in jedem	2. anlie	genden G	iurt			
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R. _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	13,91	28,62	-	11,61	-	-	28,62	14,31	-	5,81	-	-	14,31
0,88	17,22	46,13	_	14,85	-	- 1	46,13	23,07	-	7,42	4	_	23,07
1,00	20,44	67,25	-	17,92	- 1	- 1	67,25	33,63	-	8,96	-	-	33,63
1,13	24,04	96,02	-	21,75	-	-	96,02	48,01	-	10,88	-	-	48,01
1,25	27,44	128,69	_	24,85	-	-	128,69	64,34	-	12,42	-	-	64,34
1,50	34,67	203,42	_	29,97	-	-	203,42	101.71	-	14.98		_	101,71


SAB 155R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f_{v.k} =

350 N/mm²

Anlage 2.4.1 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Leiter: Bearbeiter:

\$350GD

Maßgebende Querschnittswerte

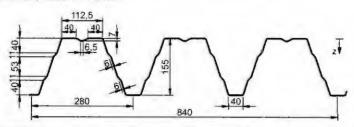
Nenn-	Eigenlast	Biegu	ng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke a)	g I* _{err}			nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	I- eff	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm ⁴	¹/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,107	379,7	366,5	12,43	5,50	6,58	5,02	6,29	6,96	9,85	12,31
0,88	0,126	461,2	443,9	14,70	5,50	6,58	6,77	6,25	6,95	11,65	14,56
1,00	0,143	529,7	507,9	16,80	5,50	6,58	8,52	6,21	6,95	13,31	16,64
1,13	0,161	601,2	576,6	19,08	5,50	6,58	10,56	6,17	6,96	15,11	18,89
1,25	0,179	667,2	639,9	21,17	5,50	6,58	12,53	6,14	6,95	16,78	20,97
1,50	0,214	804,6	771,8	25,54	5,50	6,58	16,35	6,05	6,89	20,24	25,31

Schubfeldwerte

	C.	onzalistano	d der Gebrau	ahatawaliah	akoit 17)		(Grenzzus	tand der	Tragfähi	gkeit 18)	
	GI	enzzustand	i der Gebrau	cristaugilci	ikeil "						asteinleitu	ing
t _N	T _{b,Ck}	K, ^{14) 15)}	K ₂ ^{14) 15)}	K*, 15)	K* 15)	T 16)	L _R 16)	T _{Rk,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} ²¹⁾	für a ≥
	, P'CK	1	1 12	1 1	2	T _{Rk,g} 16)	-R	* Rk,I	.3		130 mm	280 mn
mm	kN/m	10-⁴·m/kN	10-⁴ ·m²/kN	10⁴ ·1/kN	10-4 · m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normall	pefestigur	g: Verbind	ung in jedem	Untergurt								
0,75	2,295	0,304	50,545	4,167	1,960	12,19	8,00	14,98	0,707	2,89	12,17	16,20
0,88	3,494	0,257	33,199	4,167	1,960	15,68	8,00	24,80	0,769	3,72	14,40	19,16
1,00	4,879	0,225	23,776	4,167	1,960	19,15	8,00	37,02	0,822	4,54	16,46	21,90
1,13	6,702	0,198	17,308	4,167	1,960	23,17	8,00	54,19	0,876	5,50	18,69	24,87
1,25	8,702	0,178	13,331	4,167	1,960	27,09	8,00	74,12	0,923	6,43	20,75	27,61
1,50	13,916	0,148	8,336	4,167	1,960	35,89	8,00	127,75	1,014	8,52	25,03	33,31
Sondert	pefestigur	ıg: Verbindi	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	2,244	0,304	27,754	4,167	0,980	12,19	8,00	14,98	1,078	7,62	12,17	16,20
0,88	3,416	0,257	18,229	4,167	0,980	15,68	8,00	24,80	1,078	9,80	14,40	19,16
1,00	4,770	0,225	13,056	4,167	0,980	19,15	8,00	37,02	1,078	11,98	16,46	21,90
1,13	6,553	0,198	9,504	4,167	0,980	23,17	8,00	54,19	1,078	14,49	18,69	24,87
1,25	8,508	0,178	7,320	4,167	0,980	27,09	8,00	74,12	1,078	16,95	20,75	27,61
1,50	13,606	0,148	4,577	4,167	0,980	35,89	8,00	127,75	1,078	22,47	25,03	33,31

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße".

(Klasse 1 nach DIN EN 508-1:2014)


SAB 155R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Anlage 2.4.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: / Bearbeiter

REISTAAT SACHSEN S350CD

Nennstreckgrenze des Stahlkernes f

350 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

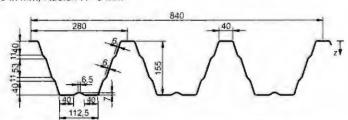
Nenn-	Feldmo-					Elastis	ch aufr	nehmb	are So	hnittgrö	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	End	lauf- kraft ⁶⁾	Quer-					1	Quadra	atische	Interakti	on			
dicke		lagen	trait '	kraft		5	Stützm	oment	е			Zw	ischena	uflagerkr	äfte	
	40 mm 90 t _N M _{c,Rk,F} R _{w,Rk,i}	_{a2} = 90 mm		 _{a,B} = 1	10 mm	I_8= 6	0 mm	 = 1	60 mm	J _{a,9} = 1	0 mm	1,8 = 6	60 mm	I _{a B} = 16	60 mm	
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Ric,B}	M _{c,Rk,B}	M ⁰ Rk,S	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN		V _{w,Rk} kN/m			kNr	n/m					kN	l/m		
0,75	17,22	14,68	16,62		-	-	12,15	7,94	13,65	11,20	-	-	20,52	17,71	39,43	29,65
0,88	22,46	22,71	25,10		-	-	15,35	11,15	18,00	15,45	-	-	30,09	23,56	57,35	41,86
1,00	27,29	30,12	32,92		-	-	18,30	14,12	22,01	19,37	-	-	38,93	28,95	73,89	53,14
1,13	32,30	40,49	42,44	n.m.	-	-	23,68	18,87	25,86	23,95	-	-	51,18	38,96	98,53	67,72
1,25	36,92	50,06	51,23		-	-	28,64	23,27	29,42	28,17	_	-	62,49	48,20	121,28	81,18
1,50	44,55	60,40	61,81		-	-	34,56	28,08	35,49	33,99			75,41	58,16	146,34	97,95

Reststützmomente 8)

	l _{a,l}	= 10 m	m	l _{a,6}	= 60 m	ım	l _{a,i}	= 160 m	ım	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤ min L
										L – min L
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
										M _{R.Rk} = max M _{R.Rk} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 112)

Nenn-	ech- ment	Ve	erbindung	g in jeden	n anliege	enden Gu	urt	Ver	bindung	in jedem	2. anlie	genden G	Burt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	11,87	28,46	-	13,46	-	-	28,46	14,23	-	6,73	-	-	14,23
0,88	15,89	45,90	-	17,69	-	-	45,90	22,95	-	8,84	-	4	22,95
1,00	19,12	67,14	-	21,34	-	-	67,14	33,57	-	10,67	-	-	33,57
1,13	22,24	96,49	-	25,17	-	-	96,49	48,24	-	12,59	-	-	48,24
1,25	25,08	129,42	-	28,67	-	-	129,42	64,71	-	14,34	-	-	64,71
1,50	32,85	205,47	-	35,54	-	•	205,47	102,73	-	17,77	-	-	102,73
								1					


SAB 155R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Anlage 2.4.3 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08/2025 Leiter: Bearbeiter:

\$350GD

Nennstreckgrenze des Stahlkernes f., =

350 N/mm²

Maßgebende Querschnittswerte

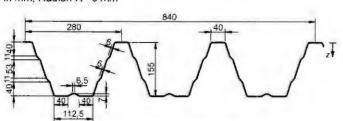
Nenn-	Eigenlast	Biegu	ng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksame	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I+ eff	I- eff	A ₉	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	Lgr
mm	kN/m²	cm ⁴	/m	cm²/m	cn	n	cm²/m	cr	n		m
0,75	0,107	366,5	379,7	12,43	5,50	8,92	5,02	6,29	8,54	/	
0,88	0,126	443,9	461,2	14,70	5,50	8,92	6,77	6,25	8,55	1	1
1,00	0,143	507,9	529,7	16,80	5,50	8,92	8,52	6,21	8,55	1	
1,13	0,161	576,6	601,2	19,08	5,50	8,92	10,56	6,17	8,54	/	
1,25	0,179	639,9	667,2	21,17	5,50	8,92	12,53	6,14	8,55		
1,50	0,214	771,8	804,6	25,54	5,50	8,92	16,35	6,05	8,61	7	

Schubfeldwerte

	C.	onzzuetone	der Gebrau	obetovalich	skait 17)		(Grenzzus	tand der	Tragfähi	gkeit 18)	
	Gi	enzzustario	der Gebrac	Cistaugiici	ikeii .						asteinleitu	ıng
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,i}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} ²¹⁾	füra≥
	b,Ck	• 1	2	** 1	2	* Rk,g	-R	Rk,I	, -3		130 mm	280 mm
mm	kN/m	10 ⁻⁴ ·m/kN	10-⁴ · m²/kN	10⁴ ·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normall	efestigur	ng: Verbindu	ung in jedem	Untergurt								
0,75	1,736	0,304	86,193	4,167	1,960	12,19	8,00	14,98	0,374	3,71	18,88	18,88
0,88	2,643	0,257	56,613	4,167	1,960	15,68	8,00	24,80	0,407	4,77	22,34	22,34
1,00	3,690	0,225	40,545	4,167	1,960	19,15	8,00	37,02	0,435	5,83	25,53	25,53
1,13	5,069	0,198	29,516	4,167	1,960	23,17	8,00	54,19	0,464	7,06	28,99	28,99
1,25	6,582	0,178	22,733	4,167	1,960	27,09	8,00	74,12	0,489	8,25	32,18	32,18
1,50	10,526	0,148	14,215	4,167	1,960	35,89	8,00	127,75	0,537	10,94	38,83	38,83
Sonder	efestigur	ng: Verbindu	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	12,41	0,304	1,784	4,167	0,980	12,19	8,00	14,98	1,273	19,97	18,88	18,88
0,88	18,89	0,257	1,172	4,167	0,980	15,68	8,00	24,80	1,273	25,70	22,34	22,34
1,00	26,38	0,225	0,839	4,167	0,980	19,15	8,00	37,02	1,273	31,40	25,53	25,53
1,13	36,24	0,198	0,611	4,167	0,980	23,17	8,00	54,19	1,273	37,99	28,99	28,99
1,25	47,05	0,178	0,471	4,167	0,980	27,09	8,00	74,12	1,273	44,44	32,18	32,18
1,50	75,25	0,148	0.294	4,167	0,980	35,89	8,00	127,75	1,273	58,89	38,83	38,83

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße".

(Klasse 1 nach DIN EN 508-1:2014)


SAB 155R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Anlage 2.4.4 zum Prüfbescheid

ALS TYPENENTWURF in baustatischer Hinsicht geprüft.

Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Bearbeiter:

Nennstreckgrenze des Stahlkernes f =

350 N/mm²

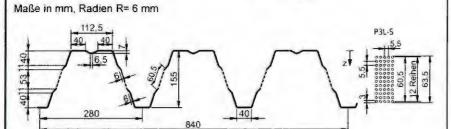
Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				I	Elastis	ch aufr	nehmb	are Sc	hnittgr	ößen an	Zwische	nauflage	ern ^{1) 2) 4)}	5) 7)	
blech-	ment	End	auf- kraft ⁶⁾	Quer-						Line	eare Inte	eraktion				
dicke		lagen	trait "	kraft		5	Stützm	oment	е			Zw	ischenau	uflagerkr	äfte	
		= 10 mm	l _{a2} = 40 mm		(_{a,B} = 1	0 mm	I _{a B} = 6	0 mm	 _{a,B} = 1	60 mm	I _{a B} = 1	0 mm	I _{a,B} = 6	60 mm	l _{a,B} = 16	60 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ^o _{Rk,B}	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	/m	kN/m			kNr	n/m						l/m		
0,75	11,87	5,07	7,68		16,82	13,46	16,82	13,46	16,82	13,46	12,67	10,14	22,13	17,70	32,24	25,79
0,88	15,89	7,19	10,74		22,11	17,69	22,11	17,69	22,11	17,69	17,98	14,38	30,84	24,67	44,61	35,69
1,00	19,12	9,54	14,09		26,67	21,34	26,67	21,34	26,67	21,34	23,84	19,07	40,33	32,27	57,97	46,38
1,13	22,24	12,54	18,33	n.m.	31,47	25,17	31,47	25,17	31,47	25,17	31,35	25,08	52,32	41,86	74,75	59,80
1,25	25,08	15,79	22,87		35,84	28,67	35,84	28,67	35,84	28,67	39,47	31,57	65,12	52,10	92,57	74,06
1,50	32,85	24,22	34,53		44,42	35,54	44,42	35,54	44,42	35,54	60,56	48,44	97,89	78,31	137,83	

Reststützmomente 8)

	J _{a,i}	_B = 10 m	m	l _{a, 6}	= 60 m	m	l _{a,s}	= 160 m	m	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
							L			$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M$
										M _{R,Rk} = max M _{R,Rk} für L≥max I

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)


Nenn-	. 4	Ve	erbindun	g in jeder	n anlieg	enden Gi	urt	Ver	bindung	in jedem	2. anlie	genden (3urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	$R_{w,Rk,A}$	M° Rk,B	M _{c,Rk,B}	R° Rk,B	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	13,46	28,46	-	11,87	-	-	28,46	14,23	-	5,94	-	-	14,23
0,88	17,69	45,90	4	15,89	-		45,90	22,95	-	7,94		-	22,95
1,00	21,34	67,14	-	19,12	-	_	67,14	33,57	-	9,56	-	-	33,57
1,13	25,17	96,49	-	22,24	-	-	96,49	48,24	-	11,12	-	- 1	48,24
1,25	28,67	129,42	-	25,08	- 1	-	129,42	64,71	-	12,54	-	100	64,71
1,50	35,54	205,47	-	32,85	-	-	205,47	102,73	-	16,42	-	-	102,73

SAB 155R/840 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Leipzig, den 05.08.2025 eiter: FRESTAAT Bearbeiter:

Anlage 2.5.1 zum Prüfbescheid
ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik

SEHSE

5350GD

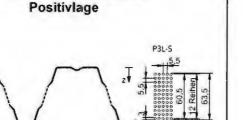
Nennstreckgrenze des Stahlkernes f

350 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt ^{12j}	Einfeld- träger	Mehrfeld- träger
t _N	g	+ eff	l ⁺ eff	Ag	i _g	Z _g	Aen	i _{en}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm ⁴	[‡] /m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,101	377,4	360,3	10,92	5,82	6,42	4,63	6,54	6,89	9,85	12,31
0,88	0,118	457,2	436,9	12,91	5,82	6,42	6,22	6,51	6,87	11,65	14,56
1,00	0,134	522,4	499,9	14,76	5,82	6,42	7,81	6,48	6,87	13,31	16,64
1,13	0,151	593,0	567,5	16,75	5,82	6,42	9,66	6,44	6,87	15,11	18,89
1,25	0,168	658,1	629,8	18,59	5,82	6,42	11,45	6,41	6,87	16,78	20,97
1,50	0,201	793,6	759,6	22,43	5,82	6,41	14,86	6,31	6,81	20,24	25,31

Schubfeldwerte


	C-	onari intoni	der Gebrau	ahata i aliak	akoit 17)		(Grenzzus	tand der	Tragfähi	gkeit 18)	
	Gi	enzzustant	der Gebrau	iciistaugiici	IKEIL '					1	_asteinleitu	ing
t _N	Т	K, ¹⁴⁾ 15)	K ₂ ^{14) 15)}	K*, 15)	K*, 15)	T 16)	L _R ¹⁶⁾	T _{Rk,t}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	T _{b,Ck}	1	2	. 1	2	T _{Rk,g} 16)	⊢R	' Rk,I	1.3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m²/kN	10⁴ ·1/kN	10-⁴ ·m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normall	befestigur	ıg: Verbindı	ung in jedem	Untergurt								
0,75	1,912	0,304	60,661	4,167	1,960	12,04	8,00	14,23	0,707	2,41	12,17	16,20
0,88	2,911	0,257	39,844	4,167	1,960	15,49	8,00	22,94	0,769	3,10	14,40	19,16
1,00	4,065	0,225	28,535	4,167	1,960	18,93	8,00	33,55	0,822	3,79	16,46	21,90
1,13	5,584	0,198	20,773	4,167	1,960	22,89	8,00	48,22	0,876	4,58	18,69	24,87
1,25	7,251	0,178	15,999	4,167	1,960	26,77	8,00	64,78	0,923	5,36	20,75	27,61
1,50	11,596	0,148	10,004	4,167	1,960	35,47	8,00	110,26	1,014	7,10	25,03	33,31
Sonder	pefestigur	ıg: Verbindi	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,870	0,304	33,309	4,167	0,980	12,04	8,00	14,23	1,078	6,35	12,17	16,20
0,88	2,847	0,257	21,878	4,167	0,980	15,49	8,00	22,94	1,078	8,17	14,40	19,16
1,00	3,975	0,225	15,669	4,167	0,980	18,93	8,00	33,55	1,078	9,98	16,46	21,90
1,13	5,460	0,198	11,406	4,167	0,980	22,89	8,00	48,22	1,078	12,08	18,69	24,87
1,25	7,089	0,178	8,785	4,167	0,980	26,77	8,00	64,78	1,078	14,12	20,75	27,61
1,50	11,337	0.148	5.493	4,167	0.980	35.47	8,00	110,26	1,078	18,72	25,03	33,31

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße". (Klasse 1 nach DIN EN 508-1:2014)

SAB 155R/840 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f_{y,k} =

350 N/mm²

Anlage 2.5.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

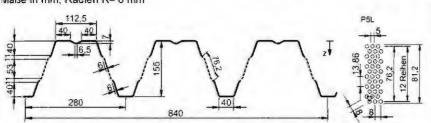
Leipzig, den 95.08.2025 Leiter: FREISTAAT Bearbeiter:

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-					Elastis	ch aufr	nehmb	are Sc	hnittgrä	ißen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment		lauf- kraft ⁶⁾	Quer-						Line	are Inte	eraktion				
dicke	I _{a1} =			kraft			Stützm	oment	е			Zw	ischenau	uflagerkr	äfte	
			= = 90 mm		 _{a,8} = 1	0 mm	I _{a,B} = 6	0 mm	I _{a,B} = 10	60 mm	I _{a,8} = 1	0 mm	1 _{a,8} = 6	60 mm	I _{a,B} = 16	80 mm
-	M _{c,Rk,F}	R _w	,Rk,A	V _{w,Rk}	Mº Rk,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m		•	kNr	n/m			8		kN	l/m		
0,75	16,08	10,76	12,09	14,23	-	-	13,16	7,12	16,12	9,83	-	-	22,84	17,49	38,47	26,04
0,88	21,76	15,94	17,96	22,94	-	-	19,46	10,41	20,91	14,07		-	30,70	24,03	58,83	37,52
1,00	27,01	20,72	23,39	33,55	-	-	25,27	13,46	25,33	17,97		-	37,96	30,06	77,64	48,12
1,13	31,50	26,82	30,49	48,22	-	-	29,48	17,39	29,46	22,10		-	52,59	39,88	100,07	59,48
1,25	35,64	32,46	37,06	64,78	-	-	33,37	21,02	33,27	25,91		-	66,09	48,94	120,77	69,96
1,50	43,01	39,16	44,71	110,26	-	-	40,27	25.37	40.14	31.26		_	79,74	59,05	145,73	84.42

Reststützmomente 8)

	l _{a,l}	_B = 10 m	ım	l _{a,i}	_B = 60 m	ım	l _{a,l}	_B = 160 m	nm	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$
										Max E Hill E
										M _{R.Rk} = max M _{R.Rk} für L≥ max L


Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

		Ve	erbindung	j in jeden	n anliege	enden Gu	urt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	$R_{w_iRk,A}$	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	Mº _{Rk,B}	M _{c,Rk,B}	R ⁰ _{RK,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	11,29	14,23	-	13,38	-	-	14,23	7,12	-	6,69	-	-	7,12
0,88	15,23	22,94	-	17,64	-	-	22,94	11,47	-	8,82	- 1	-	11,47
1,00	18,43	33,55	-	21,29	_	-	33,55	16,78	-	10,64	-	-	16,78
1,13	21,47	48,22	-	25,11	-	-	48,22	24,11	-	12,56	1	-	24,11
1,25	24,24	64,78	-	28,58	-	-	64,78	32,39	-	14,29	-	- 1	32,39
1,50	29,26	110,26	-	35,39	_	_	110.26	55,13	_	17.69		- 1	55,13

SAB 155R/840 P5L

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Maße in mm, Radien R= 6 mm Positivlage

Anlage 2.6.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025

iter: FREISTAN Bearbeiter:

S350GD

Nennstreckgrenze des Stahlkernes f, =

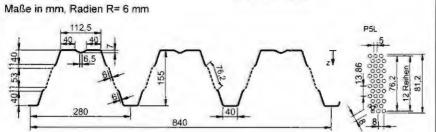
350 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstüt	zweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksame	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	[·	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm ⁴	/m	cm²/m	cr	n	cm²/m	cr	n		n
0,75	0,095	346,1	346,5	9,66	6,08	6,24	4,36	6,72	6,77	,4	
0,88	0,111	419,9	421,3	11,43	6,08	6,24	5,87	6,68	6,76	1	1
1,00	0,126	482,2	482,2	13,06	6,08	6,24	7,38	6,65	6,75	/	
1,13	0,142	547,3	547,3	14,82	6,08	6,24	9,13	6,62	6,75	1	
1,25	0,158	607,4	607,4	16,45	6,08	6,24	10,83	6,58	6,75		
1,50	0,189	732,6	732,6	19,85	6,08	6,24	14,14	6,49	6,66		

Schubfeldwerte

	C-	onaai intoni	d der Gebrau	obotovalist	skoit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	enzzustani	der Gebrau	ichstaughei	IKEIL '					ı	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K ₂ 14) 15)	K*, 15)	K* 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	1,1	2	33.1	2	'Rk,g	-R	Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10-4 · 1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normall	pefestigur	g: Verbind	ung in jedem	Untergurt								
0,75	1,718	0,304	67,513	4,167	1,960	11,72	8,00	10,30	0,707	2,16	12,17	16,20
0,88	2,616	0,257	44,344	4,167	1,960	15,08	8,00	16,68	0,769	2,78	14,40	19,16
1,00	3,653	0,225	31,758	4,167	1,960	18,42	8,00	24,47	0,822	3,40	16,46	21,90
1,13	5,018	0,198	23,119	4,167	1,960	22,28	8,00	35,27	0,876	4,12	18,69	24,87
1,25	6,515	0,178	17,806	4,167	1,960	26,05	8,00	47,54	0,923	4,81	20,75	27,61
1,50	10,419	0,148	11,134	4,167	1,960	34,52	8,00	81,37	1,014	6,38	25,03	33,31
Sonderl	pefestigun	g: Verbind	ung mit 2 Scl	hrauben od	er verstärkte	r Unterle	egschei	be in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,680	0,304	37,072	4,167	0,980	11,72	8,00	10,30	1,078	5,70	12,17	16,20
0,88	2,558	0,257	24,349	4,167	0,980	15,08	8,00	16,68	1,078	7,34	14,40	19,16
1,00	3,571	0,225	17,438	4,167	0,980	18,42	8,00	24,47	1,078	8,97	16,46	21,90
1,13	4,906	0,198	12,695	4,167	0,980	22,28	8,00	35,27	1,078	10,85	18,69	24,87
1,25	6,369	0,178	9,777	4,167	0,980	26,05	8,00	47,54	1,078	12,69	20,75	27,61
1,50	10,186	0,148	6,114	4,167	0,980	34,52	8,00	81,37	1,078	16,82	25,03	33,31


a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße".

(Klasse 1 nach DIN EN 508-1:2014)

SAB 155R/840 P5L

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Positivlage

Anlage 2.6.2 zum Prüfbescheid
ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025

Leiter: Bearbeiter: Bearbeiter: S350GD

Nennstreckgrenze des Stahlkernes f =

350 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn- Feldmo- blech- ment	Feldmo-				1	Elastis	ch aufr	nehmb	are Sc	hnittgr	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-		End	auf-	Quer-						Line	eare Inte	eraktion				
dicke		lagen	kraft ⁶⁾	kraft		5	Stützm	oment	е			Zw	ischena	uflagerkr	äfte	
		_{a1} = 10 mm	l _{a2} = 40 mm			0 mm	I _{a B} = 6	60 mm	I _{a,B} = 1	60 mm	I _{s,B} = 1	0 mm	I _{a.8} = 6	60 mm	I _{a,B} = 16	60 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	M° RK,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNr	n/m					k٨	l/m		
0,75	13,21	5,02	7,60	10,30	13,44	10,75	13,44	10,75	13,44	10,75	12,55	10,04	21,91	17,53	29,21	23,37
0,88	17,33	6,96	10,39	16,68	18,39	14,71	18,39	14,71	18,39	14,71	17,39	13,91	29,84	23,87	39,16	31,33
1,00	20,85	9,00	13,30	24,47	21,79	17,43	21,79	17,43	21,79	17,43	22,51	18,00	38,07	30,46	49,39	39,51
1,13	24,49	11,50	16,80	35,27	25,35	20,28	25,35	20,28	25,35	20,28	28,74	22,99	47,96	38,37	61,54	49,23
1,25	27,77	14,05	20,35	47,54	28,67	22,94	28,67	22,94	28,67	22,94	35,12	28,10	57,95	46,36	73,72	58,98
1,50	34,17	20,14	28,70	81,37	34,61	27,69	34,61	27,69	34,61	27,69	50,34	40,27	81,38	65,10	101,95	81,56

Reststützmomente 8)

	l _{a,}	e = 10 m	ım	l _{a,t}	= 60 m	ım	J _{a,i}	_B = 160 m	ım	Re	eststützmo	omente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}			
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m			
										M _{R,Rk} =	0	für L≤min L
											L - m	nio I
				_						M _{R,Rk} =	max L -	max M
										M _{R,Rk} =	max M _{R,Rk}	für L≥max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

	10	Ve	erbindung	g in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ Rk,8	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	10,75	10,30	-	13,21	-	-	10,30	5,15	-	6,61	-	-	5,15
88,0	14,71	16,68	-	17,33	4	-	16,68	8,34		8,67	-	-	8,34
1,00	17,43	24,47	-	20,85	-	-	24,47	12,24	(-)	10,42	-	12.1	12,24
1,13	20,28	35,27		24,49	=	-	35,27	17,64	-	12,25	-	-	17,64
1,25	22,94	47,54	-	27,77	-	-	47,54	23,77	-	13,89	-	-	23,77
1,50	27,69	81,37	-	34,17	-	-	81,37	40,68	-	17,08	-	-	40,68

SAB 158R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Positivlage

Maße in mm, Radien R= 5 mm

Anlage 2.7.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 iter. Bearbeiter:

S350GD

Nennstreckgrenze des Stahlkernes f =

350 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	†	l- eff	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	4/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,120	476,0	435,0	13,93	5,63	6,59	5,60	6,46	7,07	9,08	11,35
0,88	0,141	536,0	523,1	16,48	5,63	6,59	7,55	6,42	7,03	10,97	13,70
1,00	0,160	591,0	597,7	18,83	5,63	6,58	9,53	6,37	7,00	12,54	15,65
1,13	0,181	671,0	678,3	21,38	5,63	6,58	11,78	6,33	6,95	14,24	17,80
1,25	0,200	745,0	752,8	23,73	5,63	6,58	13,89	6,28	6,90	15,80	19,75
1,50	0,240	899,0	907,7	28,62	5,63	6,58	18,29	6,17	6,77	19,07	23,80

Schubfeldwerte

	C	roozzueten	i der Gebrau	ahataualiak	Noit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	enzzustani	i dei Gebrau	icristaugiici	IKEIL '						asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	11,	2	1 1	,	T _{Rk,g} 16)	-R	Rk,I	. ,3		130 mm	280 mn
mm	kN/m	10⁴·m/kN	10-4 · m ² /kN	10⁴·1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalt	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	1,73	0,340	66,99	4,667	1,750	13,38	8,00	15,56	0,696	2,90	12,17	16,20
0,88	2,63	0,288	44,00	4,667	1,750	17,22	8,00	25,77	0,757	3,73	14,40	19,16
1,00	3,67	0,252	31,51	4,667	1,750	21,03	8,00	38,46	0,809	4,55	16,46	21,90
1,13	5,04	0,222	22,94	4,667	1,750	25,44	8,00	56,30	0,862	5,51	18,69	24,87
1,25	6,54	0,200	17,67	4,667	1,750	29,74	8,00	77,02	0,908	6,44	20,75	27,61
1,50	10,47	0,165	11,048	4,667	1,750	39,40	8,00	127,8	0,998	8,54	25,03	33,31
Sonderb	efestigur	ng: Verbind	ung mit 2 Sci	hrauben od	er verstärkte	r Unterle	egschei	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,63	0,340	46,12	4,667	0,875	13,38	8,00	15,56	1,127	6,49	12,17	16,20
0,88	2,48	0,288	30,29	4,667	0,875	17,22	8,00	25,77	1,127	8,36	14,40	19,16
1,00	3,47	0,252	21,69	4,667	0,875	21,03	8,00	38,46	1,127	10,21	16,46	21,90
1,13	4,76	0,222	15,79	4,667	0,875	25,44	8,00	56,30	1,127	12,35	18,69	24,87
1,25	6,18	0,200	12,16	4,667	0,875	29,74	8,00	77,02	1,127	14,45	20,75	27,61
1,50	9,89	0,165	7,605	4,667	0,875	39,40	8,00	127,8	1,127	19,15	25,03	33,31

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".

SAB 158R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 5 mm

Anlage 2.7.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Leipzig den 05.08.2025 Leiter GACHSEN Bearbeiter:

S350GD

Nennstreckgrenze des Stahlkernes f =

350 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

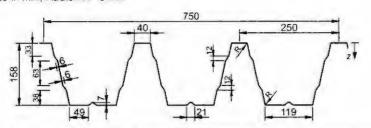
Nenn-	Feldmo-		Endaufla	gerkraft ⁶	5)	Elast	tisch aufi	nehmbar	e Schnitt	tgrößen a	an Zwisc	henaufla	agern 1) 2)	4) 5) 7)
blech-	ment		Linddand	gorman		Quer-			Qua	dratisch	e Intera	ktion		
dicke			,			kraft		Stützm	omente		Zw	ischena	uflagerkra	äfte
		40 mm 90 mm 40 mm 90 mm M _{c,Rk,F} R _{T,w,Rk,A} R _{G,w,Rk,A}	I _{a,A2} = 90 mm		I _{a B} = 6	0 mm	I _{a,8} = 1	60 mm	I _{a,B} = 6	60 mm	I _{a,B} = 16	60 mm		
t _N	M _{c,Rk,F}	R _{r,v}	v,Rk,A	R _{G,v}	-	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m			i/m		kN/m			n/m				l/m	
0,75	16,23	13,39	7	13,39			14,81	12,18	17,08	14,91	28,96	25,02	41,84	34,87
0,88	21,49	19,43		19,43			19,42	16,37	22,19	19,83	41,42	35,31	61,38	49,86
1,00	26,34	25,02	7.	25,02			23,68	20,23	26,91	24,37	52,95	44,80	79,36	63,71
1,13	29,91	28,40		28,40		n.m.	26,89	22,97	30,55	27,67	60,13	50,87	90,10	72,34
1,25	33,20	31,53		31,53			29,85	25,50	33,92	30,72	66,71	56,47	100,00	80,30
1,50	40,07	42,90		44,87			36,02	30,76	40,92	37,06	80,52	68,14	120,70	96,90

Reststützmomente 8)

	I _{a,i}	_B = 60 mm		l _{a,i}	= 160 mm		Reststütz	momente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}		
mm	m	m	kNm/m	m	m	kNm/m		
0,75	6,38	7,08	3,35	5,58	6,30	3,83	$M_{R,Rk} = 0$	für L≤min L
0,88	6,47	7,17	4,37	5,56	6,28	5,09		
1,00	6,52	7,22	5,31	5,55	6,26	6,25	M - L-	min L · max M _{R,Rk}
1,13	6,52	7,22	6,03	5,55	6,26	7,10	$M_{R,Rk} = \frac{L}{\text{max L}}$	- min L
1,25	6,52	7,22	6,69	5,55	6,26	7,89		
1,50	6,52	7,22	8,08	5,55	6,26	9,52	$M_{R,Rk} = \max M_{R}$	_{kk} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-		Ve	erbindung	in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	Burt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MA	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	13,48	33,70	-	16,10	-	-	33,70	16,85	-	8,05	-	-	16,85
0,88	17,22	54,33	-	19,94		-	54,33	27,16	-	9,97		_	27,16
1,00	20,82	79,23	-	23,74	_	-	79,23	39,61	-	11,87	-		39,61
1,13	25,24	113,15	-	27,90		-	113,15	56,58	-	13,95	_	_	56,58
1,25	28,59	151,65	-	31,83	-		151,65	75,82	-	15,91	-	_	75,82
1,50	34,47	237,18	-	40,15	-	-	237,18	118,59	_	20,08	_	-	118,59


SAB 158R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

Nennstreckgrenze des Stahlkernes f, =

350 N/mm²

Anlage 2.7.3 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

S350GD

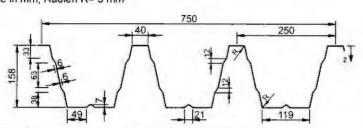
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ung ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten ¹³⁾
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I* eff	l- _{eff}	A _g	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	Cr	n	cm²/m	cr	n		m
0,75	0,120	435,0	476,0	13,93	5,63	9,21	5,60	6,46	8,73	8,15	10,15
0,88	0,141	523,1	536,0	16,48	5,63	9,21	7,55	6,42	8,77	10,35	12,90
1,00	0,160	597,7	591,0	18,83	5,63	9,22	9,53	6,37	8,80	11,35	14,15
1,13	0,181	678,3	671,0	21,38	5,63	9,22	11,78	6,33	8,85	12,10	15,10
1,25	0,200	752,8	745,0	23,73	5,63	9,22	13,89	6,28	8,90	12,75	15,90
1,50	0,240	907,7	899.0	28,62	5,63	9,22	18,29	6,17	9,03	14,00	17,50

Schubfeldwerte

	0.	onzzueten	d der Gebrau	ahata aliah	okait 17)		G	renzzus	tand der	Tragfäh	igkeit 18)	
	G	enzzustand	i der Gebrau	chstaugilci	ikeit "						asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,i}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	* b,Gk	1,4	1 2	1	. 2	'Rk,g	™R	' Rk,I	1,73		130 mm	280 mn
mm	kN/m	10⁴·m/kN	10-4 m ² /kN	10-4 · 1/kN	10 ⁻⁴ m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	1,53	0,340	93,18	4,667	1,750	13,38	8,00	15,56	0,351	4,09	18,88	18,88
0,88	2,33	0,288	61,20	4,667	1,750	17,22	8,00	25,77	0,382	5,26	22,34	22,34
1,00	3,25	0,252	43,83	4,667	1,750	21,03	8,00	38,46	0,408	6,42	25,53	25,53
1,13	4,46	0,222	31,91	4,667	1,750	25,44	8,00	56,30	0,435	7,77	28,99	28,99
1,25	5,80	0,200	24,58	4,667	1,750	29,74	8,00	77,02	0,458	9,09	32,18	32,18
1,50	9,27	0,165	15,37	4,667	1,750	39,40	8,00	127,8	0,503	12,05	38,83	38,83
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	gschei	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	8,85	0,340	2,858	4,667	0,875	13,38	8,00	15,56	1,490	17,61	18,88	18,88
0,88	13,47	0,288	1,877	4,667	0,875	17,22	8,00	25,77	1,490	22,66	22,34	22,34
1,00	18,81	0,252	1,344	4,667	0,875	21,03	8,00	38,46	1,490	27,68	25,53	25,53
1,13	25,83	0,222	0,979	4,667	0,875	25,44	8,00	56,30	1,490	33,49	28,99	28,99
1,25	33,54	0,200	0,754	4,667	0,875	29,74	8,00	77,02	1,490	39,17	32,18	32,18
1,50	53,64	0,165	0,471	4,667	0,875	39,40	8.00	127.8	1,490	51,92	38,83	38,83

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 158R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 5 mm

93

Anlage 2.7.4 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08/2025

Bearbeiter:

Nennstreckgrenze des Stahlkernes f_{v k} = 350 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

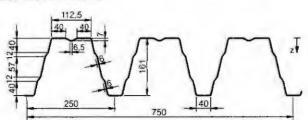
Nenn-	Feldmo-					Elastis	ch aufi	nehmb	are So	hnittgr	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment		lauf-	Quer-						Line	eare Inte	eraktion				
dicke		lagen	kraft ⁶⁾	kraft		5	Stützm	oment	е			Zw	ischenau	uflagerkr	äfte	
		l _{a1} = 10 mm	_{a2} = 40 mm			10 mm	 a ₈ = €	60 mm	I _{a,8} = 1.	60 mm	I _{a,B} = 1	0 mm	I _{a,8} = 6	60 mm	I _{a,B} = 10	60 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	Mº RKB	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m			kNr	n/m						l/m	1	
0,75	13,48	5,79	8,76		20,12	16,10	20,12	16,10	20,12	16,10	14,46	11,57	25,26	20,21	36,81	29,45
0,88	17,22	8,02	11,97		24,92	19,94	24,92	19,94	24,92	19,94	20,04	16,03	34,38	27,51	49,73	39,78
1,00	20,82	10,38	15,34		29,67	23,74	29,67	23,74	29,67	23,74	25,96	20,77	43,92	35,14	63,13	50,50
1,13	25,24	13,29	19,42	n.m.	34,87	27,90	34,87	27,90	34,87	27,90	33,23	26,58	55,45	44,36	79,22	63,38
1,25	28,59	16,29	23,60		39,78	31,83	39,78	31,83	39,78	31,83	40,73	32,58	67,20	53,76	95,52	76,42
1,50	34,47	23,55	33,56		50,19	40,15	50,19	40,15	50,19	40,15	58,87	47,09	95,16	76,13	133,99	107,19

Reststützmomente 8)

	l _{a,t}	_B = 10 m	m	l _{a,t}	= 60 m	m	l _{a,E}	= 160 m	m	Reststützmomente M _{R.Rk}
r _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{RRk} = 0 für L≤min L
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M$
										max c - min c
										M _{R,Rk} = max M _{Rk} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

	Feldmo-	Ve	erbindung	g in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	Surt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MA	/- Intera	ktion	
t _N	M _{c,Rk,F}	$R_{w,Rk,A}$	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	16,10	33,70	-	13,48	-	1-	33,70	16,85	-	6,74	-	-	16,85
0,88	19,94	54,33	-	17,22	-	-	54,33	27,16	-	8,61		-	27,16
1,00	23,74	79,23	-	20,82		-	79,23	39,61	-	10,41	-	-	39,61
1,13	27,90	113,15	-	25,24	-	-	113,15	56,58	-	12,62	-	-	56,58
1,25	31,83	151,65	-	28,59	- 1	-	151,65	75,82	-	14,29	-	-	75,82
1,50	40,15	237,18	-	34,47	-	(=	237,18	118.59	_	17,24	_	_	118,59


SAB 160R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f =

350 N/mm²

Anlage 2.8.1 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025

FREISTAAT Bearbeiter:

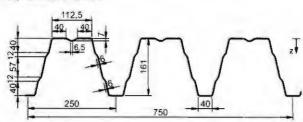
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	malkraftbe	anspruchu	ing		Grenzstü	tzweiten ¹³⁾
blech- dicke				nicht reduzi A _g cm²/m 13,92 16,47 18,82 21,36 23,71	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	+ eff	I-	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm ² /m cm		n	cm²/m	cr	n		m
0,75	0,120	458,4	443,2	13,92	5,71	6,83	5,64	6,55	7,22	9,83	12,29
0,88	0,141	556,6	536,4	16,47	5,71	6,83	7,58	6,50	7,21	11,63	14,54
1,00	0,160	638,6	612,9	18,82	5,71	6,83	9,55	6,46	7,22	13,29	16,61
1,13	0,181	724,9	695,7	21,36	5,71	6,83	11,83	6,41	7,22	15,09	18,86
1,25	0,200	804,4	772,1	23,71	5,71	6,83	14,04	6,38	7,21	16,75	20,94
1,50	0,240	969,9	931,0	28,60	5,71	6,83	18,22	6,28	7,15	20,21	25,27

Schubfeldwerte

	C.	onzzuotona	der Gebrau	chataualiat	alicale 17)		(Grenzzus	tand der	Tragfähi	gkeit 18)	
	G	erizzustano	der Gebrau	ichstaughei	ikell '					L	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K ₂ ^{14) 15)}	K*, ¹⁵⁾	K*, 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,I}	K ₃ ¹⁹⁾	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	* b,Ck	' 1	2	'` 1	. 2	* Rk,g	¯R	- Rk,I	. 3		130 mm	280 mn
mm	kN/m	10⁴·m/kN	10-4 · m ² /kN	10⁴·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normall	pefestigur	ng: Verbindi	ung in jedem	Untergurt								
0,75	1,928	0,341	63,137	4,667	1,750	13,63	8,00	14,87	0,743	2,91	12,17	16,20
0,88	2,935	0,288	41,470	4,667	1,750	17,54	8,00	24,62	0,808	3,75	14,40	19,16
1,00	4,099	0,252	29,700	4,667	1,750	21,42	8,00	36,75	0,863	4,58	16,46	21,90
1,13	5,630	0,222	21,620	4,667	1,750	25,91	8,00	53,79	0,920	5,54	18,69	24,87
1,25	7,310	0,200	16,652	4,667	1,750	30,30	8,00	73,58	0,969	6,48	20,75	27,61
1,50	11,691	0,166	10,412	4,667	1,750	40,14	8,00	127,75	1,065	8,58	25,03	33,31
Sondert	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	ler verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,836	0,341	39,454	4,667	0,875	13,63	8,00	14,87	1,193	6,97	12,17	16,20
0,88	2,796	0,288	25,914	4,667	0,875	17,54	8,00	24,62	1,193	8,97	14,40	19,16
1,00	3,904	0,252	18,559	4,667	0,875	21,42	8,00	36,75	1,193	10,96	16,46	21,90
1,13	5,363	0,222	13,510	4,667	0,875	25,91	8,00	53,79	1,193	13,26	18,69	24,87
1,25	6,963	0,200	10,406	4,667	0,875	30,30	8,00	73,58	1,193	15,51	20,75	27,61
1,50	11,135	0,166	6,507	4,667	0,875	40,14	8,00	127,75	1,193	20,56	25,03	33,31

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße". (Klasse 1 nach DIN EN 508-1:2014)


SAB 160R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Anlage 2.8.2 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05 08 2025 er: FREISTAAL Bearbei

ACHSEN Bearbeiter:

Nennstreckgrenze des Stahlkernes f., =

350 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

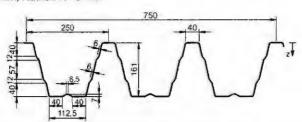
Nenn-	Feldmo-				1	Elastis	ch aufr	nehmb	are So	hnittgr	ößen an	Zwische	nauflage	ern ^{1) 2) 4)}	5) 7)	
blech-	ment	End	lauf-	Quer-						Line	eare Inte	eraktion				
dicke		lagen	kraft 6)	kraft			Stützm	oment	е			Zw	ischena	uflagerkr	äfte	
		(_{a1} = 40 mm) _{a2} = 90 mm			= 10 mm I _{a.8}		0 mm	l _{a,B} = 1	60 mm	l _{a.9} = 1	0 mm	I _{a,B} = 6	60 mm	I _{a.B} = 16	60 mm
t _N	M _{c,Rk,F}	R _w	,Rk,A	$V_{w,Rk}$	M ⁰ _{Rk,8}	M _{c,Rk,8}	M ⁰ Rk.8	M _{c,Rk,B}	M ⁰ Rk,8	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNr	n/m					kN	l/m		
0,75	20,49	17,50	19,48		-	-	14,15	9,41	20,16	12,80	-	-	36,63	20,19	49,66	33,65
0,88	26,70	25,63	28,48		-		22,62	13,37	26,70	18,08	-	-	42,34	29,13	73,35	47,45
1,00	32,44	33,13	36,79		-	-	30,45	17,02	32,72	22,96		-	47,61	37,39	95,22	60,19
1,13	37,99	44,36	49,17	n.m.	- 2	-	37,19	22,12	37,08	27,87	-	-	62,92	48,52	133,36	77,04
1,25	43,12	54,71	60,59		-		43,42	26,82	41,10	32,41	-	-	77,05	58,80	168,56	92,60
1,50	52,02	66,02	73,11		-	-	52,39	32,36	49,60	39,11	-	-	92,97	70,94	203,39	111,73

Reststützmomente 8)

	1 _{a,1}	= 10 m	nm	l _{a,f}	= 60 m	ım	1 _{a,i}	= 160 m	ım	Reststützmomente M _{R,Rk}
τ _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										I min I
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M$
										M _{R,Rk} = max M _{R,Rk} für L≥ max l

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	and the second second	Ve	erbindung	g in jeden	n anliege	enden Gu	urt	Ver	bindung	in jedem	2. anlie	genden G	Burt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MA	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,8}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	13,87	32,93	-	15,74	-	-	32,93	16,47	1	7,87	-	-	16,47
0,88	18,30	53,10	-	20,55	-		53,10	26,55	-	10,27		-	26,55
1,00	21,97	77,68	-	24,80	-	-	77,68	38,84	-	12,40	-	_	38,84
1,13	25,88	111,51	-	29,24	-	_	111,51	55,76		14,62	L. 1	-	55,76
1,25	29,15	149,45	_	33,30	-	-	149,45	74,73	-	16,65		- 1	74,73
1,50	35,16	237,81	-	41,27	-	-	237,81	118,90	-	20,64	-	-	118,90


SAB 160R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Anlage 2.8.3 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 eiter: FREISEN Bearbeiter:

S350GD

Nennstreckgrenze des Stahlkernes f, =

350 N/mm²

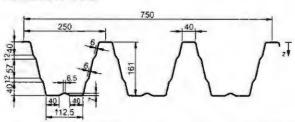
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu:	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I*	l-	A _g	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm ⁴	¹/m	cm²/m	CI	n	cm²/m	cr	n	1	m
0,75	0,120	443,2	458,4	13,92	5,71	9,27	5,64	6,55	8,88	1	
0,88	0,141	536,4	556,6	16,47	5,71	9,27	7,58	6,50	8,89	, /	/
1,00	0,160	612,9	638,6	18,82	5,71	9,27	9,55	6,46	8,88	/	
1,13	0,181	695,7	724,9	21,36	5,71	9,27	11,83	6,41	8,88		1 7
1,25	0,200	772,1	804,4	23,71	5,71	9,27	14,04	6,38	8,89		100
1,50	0,240	931,0	969,9	28,60	5,71	9,27	18,22	6,28	8,95		

Schubfeldwerte

	Gr	onzzuetane	der Gebrau	chetavaliek	skoit 17)		(Grenzzus	tand der	Tragfäh	igkeit 18)	
	Gi	enzzustand	i dei Gebiat	icristaugiici	INGIL .					1	_asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K* ₂ 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,i}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	· b,Ck	1 1	1 2	. 1	. 2	" Rk,g	-R	- Rk,I	3		130 mm	280 mn
mm	kN/m	10 ⁻⁴ ·m/kN	10 ⁻⁴ · m ² /kN	10-⁴ ·1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ıg: Verbindu	ung in jedem	Untergurt								
0,75	1,608	0,341	94,471	4,667	1,750	13,63	8,00	14,87	0,385	3,94	18,88	18,88
0,88	2,448	0,288	62,051	4,667	1,750	17,54	8,00	24,62	0,418	5,08	22,34	22,34
1,00	3,419	0,252	44,439	4,667	1,750	21,42	8,00	36,75	0,447	6,20	25,53	25,53
1,13	4,696	0,222	32,350	4,667	1,750	25,91	8,00	53,79	0,477	7,50	28,99	28,99
1,25	6,097	0,200	24,916	4,667	1,750	30,30	8,00	73,58	0,502	8,78	32,18	32,18
1,50	9,751	0,166	15,580	4,667	1,750	40,14	8,00	127,75	0,552	11,63	38,83	38,83
Sonderb	efestigun	ıg: Verbindu	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾	_	
0,75	9,34	0,341	2,757	4,667	0,875	13,63	8,00	14,87	1,506	18,05	18,88	18,88
0,88	14,22	0,288	1,811	4,667	0,875	17,54	8,00	24,62	1,506	23,23	22,34	22,34
1,00	19,86	0,252	1,297	4,667	0,875	21,42	8,00	36,75	1,506	28,38	25,53	25,53
1,13	27,28	0,222	0,944	4,667	0,875	25,91	8,00	53,79	1,506	34,33	28,99	28,99
1,25	35,42	0,200	0,727	4,667	0,875	30,30	8,00	73,58	1,506	40,15	32,18	32,18
1,50	56,65	0,166	0,455	4,667	0,875	40,14	8,00	127,75	1,506	53,22	38,83	38,83

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße". (Klasse 1 nach DIN EN 508-1:2014)


SAB 160R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f

350 N/mm²

N 1993-1-3 ALS TYPENENTWURF in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Prüfbescheid Nr. T25-122
Landesdirektion Sachsen
Landesstelle für Bautgchnik

Anlage 2.8.4 zum Prüfbescheid

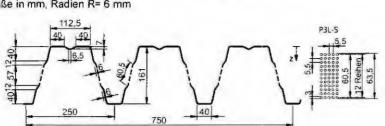
Leipzig, den 05.08.2025 Leiter: REISTAAT Bearbeiter:

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				E	Elastis	ch aufr	nehmb	are So	hnittgr	ößen an	Zwische	nauflage	rn 1) 2) 4)	5) 7)	
blech-	ment	End	auf- kraft ⁶⁾	Quer-						Line	eare Inte	eraktion				
dicke		lagen	(Tail)	kraft			Stützm	oment	е			Zw	ischenau	ıflagerkr	äfte	
			l _{a2} = 40 mm		I _{a,B} = 1	10 mm I _{a B}		0 mm	I _{a,B} = 1	60 mm	I _{a,B} = 1	0 mm	1,8 = 6	0 mm	i _{a,B} = 16	60 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	Mº RK,B	M _{c,Rk,B}	Mº Ric,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rh,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	/m	kN/m			kNr	n/m					kN	/m		
0,75	13,87	5,90	8,94		19,67	15,74	19,67	15,74	19,67	15,74	14,75	11,80	25,76	20,61	37,53	30,03
0,88	18,30	8,39	12,54		25,68	20,55	25,68	20,55	25,68	20,55	20,98	16,78	36,00	28,80	52,06	41,65
1,00	21,97	11,16	16,48		30,99	24,80	30,99	24,80	30,99	24,80	27,90	22,32	47,19	37,75	67,83	54,27
1,13	25,88	14,72	21,51	n.m.	36,54	29,24	36,54	29,24	36,54	29,24	36,79	29,44	61,40	49,12	87,73	70,18
1,25	29,15	18,58	26,91		41,63	33,30	41,63	33,30	41,63	33,30	46,45	37,16	76,65	61,32	108,95	87,16
1,50	35,16	28,69	40,89		51,59	41,27	51,59	41,27	51,59	41,27	71,72	57,38	115,94	92,76	163,25	130,60

Reststützmomente 8)

	l _{a,i}	_e = 10 m	m	j _{a,f}	= 60 m	m	l _{a,E}	= 160 m	m	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
								-		l min l
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R}$
										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
										M _{RRk} = max M _{RRk} für L≥ max L


Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-		Ve	erbindun	g in jeder	n anlieg	enden Gi	urt	Ver	bindung	in jedem	2. anlie	genden (3urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M° Rk,B	M _{c,Rk,B}	R° Rk,B	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M° _{Rk,B}	M _{c,Rk,B}	R° Rk,B	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	15,74	32,93	-	13,87	-	-	32,93	16,47	-	6,93	-	-	16,47
88,0	20,55	53,10	-	18,30	-	-	53,10	26,55	-	9,15	-	-	26,55
1,00	24,80	77,68	-	21,97	-	-	77,68	38,84	-	10,98	-	-	38,84
1,13	29,24	111,51	-	25,88	-	-	111,51	55,76	-	12,94	-	-	55,76
1,25	33,30	149,45	_	29,15	- 1	_	149,45	74,73	-	14,58	-	-	74,73
1,50	41,27	237,81	-	35,16	-	-	237,81	118,90	-	17,58	-	-	118,90

SAB 160R/750 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Maße in mm, Radien R= 6 mm

Anlage 2.9.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08/2025 Leiter: FREISTAN Bearbeiter:

S350GD

Nennstreckgrenze des Stahlkernes f

350 N/mm²

Positivlage

Maßgebende Querschnittswerte

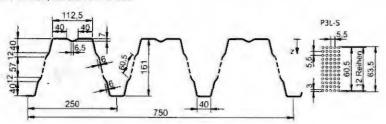
Nenn-	Eigenlast	Biegu	ng ¹¹⁾		Norr	nalkraftbe	anspruchu	ıng		Grenzstü	tzweiten 13)
blech- dicke				nicht redu:	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I+ eff	I-	A _g	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm ⁴	¹/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,113	451,8	434,9	12,14	6,06	6,65	5,20	6,81	7,14	9,83	12,29
0,88	0,132	548,3	527,2	14,37	6,06	6,65	6,97	6,77	7,12	11,63	14,54
1,00	0,150	629,0	602,3	16,41	6,06	6,65	8,75	6,74	7,12	13,29	16,61
1,13	0,170	713,9	683,7	18,63	6,06	6,65	10,80	6,70	7,12	15,09	18,86
1,25	0,188	792,2	758,7	20,68	6,06	6,65	12,79	6,67	7,11	16,75	20,94
1,50	0,225	955,2	914,9	24,95	6,06	6,65	16,50	6,57	7,05	20,21	25,27

Schubfeldwerte

	G	onazueton	d der Gebrau	uchetaualiek	akolit 17)		C	Grenzzus	tand der	Tragfähi	gkeit 18)	
	GI	enzzustand	i der Gebrau	icristaugiici	ikeii '						_asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, ¹⁵⁾	K*, 15)	T _{Rk,g} 16)	L _R 16)	T _{Rk,I}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	,,,	1 2	1	2	'Rk,g	-R	- RkJ	3		130 mm	280 mm
mm	kN/m	10 ⁴ ·m/kN	10 ⁻⁴ ·m²/kN	10⁴ ·1/kN	10 ⁻⁴ m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	g: Verbind	ung in jedem	Untergurt								
0,75	1,608	0,341	75,711	4,667	1,750	13,45	8,00	14,87	0,743	2,43	12,17	16,20
0,88	2,448	0,288	49,729	4,667	1,750	17,31	8,00	24,62	0,808	3,12	14,40	19,16
1,00	3,418	0,252	35,615	4,667	1,750	21,14	8,00	36,75	0,863	3,82	16,46	21,90
1,13	4,695	0,222	25,926	4,667	1,750	25,57	8,00	53,79	0,920	4,62	18,69	24,87
1,25	6,096	0,200	19,968	4,667	1,750	29,90	8,00	73,58	0,969	5,40	20,75	27,61
1,50	9,749	0,166	12,486	4,667	1,750	39,62	8,00	127,55	1,065	7,16	25,03	33,31
Sonderb	efestigur	g: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gsche	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,531	0,341	47,312	4,667	0,875	13,45	8,00	14,87	1,193	5,81	12,17	16,20
0,88	2,331	0,288	31,075	4,667	0,875	17,31	8,00	24,62	1,193	7,48	14,40	19,16
1,00	3,255	0,252	22,255	4,667	0,875	21,14	8,00	36,75	1,193	9,14	16,46	21,90
1,13	4,472	0,222	16,201	4,667	0,875	25,57	8,00	53,79	1,193	11,06	18,69	24,87
1,25	5,806	0,200	12,478	4,667	0,875	29,90	8,00	73,58	1,193	12,93	20,75	27,61
1,50	9,286	0,166	7,802	4,667	0,875	39,62	8,00	127,55	1,193	17,14	25,03	33,31

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße".

(Klasse 1 nach DIN EN 508-1:2014)


SAB 160R/750 P3L-S

Positivlage

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f_{y,k} = 350 N/mm²

Anlage 2.9.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leipzig, den 05.08.2025
Leiter: REISTAAT Bearbeiter:

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-					Elastis	ch aufr	nehmb	are Sc	hnittgr	ößen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech- dicke	ment	End	lauf- kraft ⁶⁾	Quer-						Line	eare Inte	eraktion				
dicke		layen	Mail	kraft				oment	е			Zw	ischena	uflagerkr	äfte	
			= 90 mm		l _{a B} = 1	10 mm	I _{a,8} = 6	i0 mm	I _{a,B} = 1	60 mm	_{=,B} = 1	0 mm	I _{a,B} = 6	60 mm	I _{a B} = 16	30 mm
t _N	M _{c,Rk,F}	Rw	,Rk,A	$V_{w,Rk}$	M ⁰ _{Rk,B}	M _{c,Rk,B}	Mº Rk, B	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNr	n/m					kN	l/m		
0,75	19,79	12,03	13,37	16,49	-	-	17,12	8,47	18,07	11,37	-	-	22,96	18,60	43,34	29,29
0,88	25,82	18,01	20,25	26,57	-	-	20,85	12,10	23,70	16,08	-	-	36,14	27,56	64,94	41,85
1,00	31,37	23,53	26,61	38,86	-	-	24,29	15,44	28,89	20,43	-	_	48,31	35,84	84,87	53,45
1,13	36,78	30,74	34,58	55,81	-	-	30,60	20,23	34,90	25,56	-	-	63,38	47,37	109,80	67,34
1,25	41,78	37,39	41,94	74,94	-	- 1	36,42	24,64	40,45	30,30	-	-	77,29	58,02	132,81	80,16
1,50	50,41	45,11	50,61	127,55	-	- 1	43,94	29,74	48,81	36,56	-	-	93,26	70,00	160,25	96,72
	/															

Reststützmomente 8)

	l _{a,i}	e = 10 m	ım	l _{a.6}	= 60 m	ım	l _{a,t}	_B = 160 m	ım	Reststützmomente M _{R,Rk}
T _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{RRk} = 0 für L≤min L
										M _{R.Rk} = L - min L max M _{R.R}
										M _{R,Rk} = max M _{R,Rk} für L≥max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	Feldmo-	Ve	erbindung	g in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ Rk,B	M _{c,Rk,B}	$\mathbf{R}^{0}_{\mathrm{Rk},\mathrm{B}}$	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	13,18	16,49	-	15,65	-	-	16,49	8,24	-	7,82	-	-	8,24
0,88	17,52	26,57	-	20,47	-	-	26,57	13,28	-	10,24	-	-	13,28
1,00	21,19	38,86	-	24,72	-	-	38,86	19,43	-	12,36	-	1= (19,43
1,13	24,92	55,81		29,14	-	14	55,81	27,90	_	14,57	-	±	27,90
1,25	28,11	74,94	-	33,18	-	-	74,94	37,47	-	16,59	-	-	37,47
1,50	33,89	127,55	_	41,06	-	-	127,55	63,78	-	20,53	_	_	63,78

SAB 160R/750 P5L

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Maße in mm, Radien R= 6 mm

Positivlage

Maße in mm, Radien R= 6 mm

Positivlage

Anlage 2.10.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05 08.2025 Leiter: FREISTAAI Bearbeiter:

8350GD

Nennstreckgrenze des Stahlkernes f, =

350 N/mm²

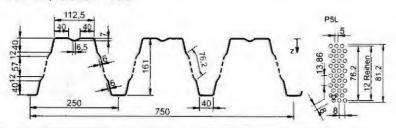
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstüt	zweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	J ⁺ eff	I- _{eff}	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	¹/m	cm²/m	cr	n	cm²/m	cr	n		n
0,75	0,106	416,3	416,9	10,71	6,32	6,47	4,89	6,99	7,03	1	
0,88	0,124	504,9	506,9	12,67	6,32	6,47	6,58	6,95	7,00	1	/
1,00	0,141	579,1	579,1	14,48	6,32	6,47	8,26	6,92	7,00		1
1,13	0,160	657,4	657,4	16,44	6,32	6,47	10,20	6,88	7,00	7	100
1,25	0,176	729,5	729,5	18,25	6,32	6,47	12,08	6,85	6,99		
1,50	0,212	879,7	879,7	22,01	6,32	6,47	15,75	6,74	6,88		

Schubfeldwerte

	n-		dar Cobro	obata valiah	ulcoit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	Gi	enzzustand	d der Gebrau	icristaugiici	ikeit "					I	_asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, ^{14) 15)}	K*, 15)	K*, 15)	T 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	, P'CK	• • •	1 12		1 2	T _{Rk,9} 16)	™R	'Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10⁴ ·1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	g: Verbindu	ang in jedem	Untergurt								
0,75	1,445	0,341	84,216	4,667	1,750	13,06	8,00	11,94	0,743	2,18	12,17	16,20
0,88	2,201	0,288	55,315	4,667	1,750	16,81	8,00	19,33	0,808	2,81	14,40	19,16
1,00	3,073	0,252	39,615	4,667	1,750	20,53	8,00	28,37	0,863	3,43	16,46	21,90
1,13	4,221	0,222	28,839	4,667	1,750	24,83	8,00	40,86	0,920	4,15	18,69	24,87
1,25	5,480	0,200	22,212	4,667	1,750	29,04	8,00	55,05	0,969	4,86	20,75	27,61
1,50	8,764	0,166	13,889	4,667	1,750	38,47	8,00	94,22	1,065	6,44	25,03	33,31
Sonderb	efestigun	g: Verbindu	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	egschei	ibe in jed	lem Unte	ergurt ²⁰⁾		
0,75	1,377	0,341	52,627	4,667	0,875	13,06	8,00	11,94	1,193	5,23	12,17	16,20
0,88	2,096	0,288	34,566	4,667	0,875	16,81	8,00	19,33	1,193	6,73	14,40	19,16
1,00	2,927	0,252	24,756	4,667	0,875	20,53	8,00	28,37	1,193	8,22	16,46	21,90
1,13	4,020	0,222	18,021	4,667	0,875	24,83	8,00	40,86	1,193	9,94	18,69	24,87
1,25	5,220	0,200	13,880	4,667	0,875	29,04	8,00	55,05	1,193	11,63	20,75	27,61
1,50	8,348	0,166	8,679	4,667	0,875	38,47	8,00	94,22	1,193	15,41	25,03	33,31

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße". (Klasse 1 nach DIN EN 508-1:2014)


SAB 160R/750 P5L

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f_{y,k} =

350 N/mm²

Anlage 2.10.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: FREISTAAT Bearbeiter:

\$350GD

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

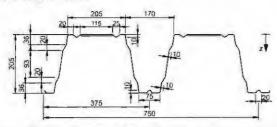
,		auf- craft ⁶⁾	Quer- kraft					Elastisch aufnehmbare Schnittgrößen an Zwischenauflagern 1) 2) 4) 5) 7)							
,		(rait	kraft						Line	eare Inte	eraktion				
- 1			Mail		5	Stützm	oment	е			Zw	ischenau	ıflagerkr	äfte	
	l _{a1} = 10 mm			_{a,9} = 1	0 mm	1 _{a,0} = 6	80 mm	I _{a,8} = 1	60 mm	I _{a B} = 1	0 mm	I _{a,B} = 6	0 mm	I _{a B} = 16	60 mm
c,Rk,F	R _w	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	Mº Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
lm/m	kN	/m	kN/m		kNm/m						kN				
5,43	5,80	8,79	11,94	15,69	12,55	15,69	12,55	15,69	12,55	14,51	11,60	25,33	20,27	34,23	27,39
0,09	8,04	12,01	19,33	21,14	16,91	21,14	16,91	21,14	16,91	20,10	16,08	34,50	27,60	45,87	36,70
4,15	10,41	15,38	28,37	25,22	20,17	25,22	20,17	25,22	20,17	26,02	20,82	44,02	35,22	57,83	46,27
3,34	13,29	19,42	40,86	29,33	23,46	29,33	23,46	29,33	23,46	33,23	26,58	55,45	44,36	72,05	57,64
2,11	16,24	23,53	55,05	33,13	26,50	33,13	26,50	33,13	26,50	40,61	32,49	67,01	53,60	86,29	69,03
9,46	23,28	33,18	94,22	39,95	31,96	39,95	31,96	39,95	31,96	58,20	46,56	94,09	75,27	119,30	95,44
5 0 4 8	m/m ,43 ,09 ,15 ,34	R _{K,F} R _{w,} n/m kN ,43 5,80 ,09 8,04 ,15 10,41 ,34 13,29 ,11 16,24	m/m kN/m ,43 5,80 8,79 ,09 8,04 12,01 ,15 10,41 15,38 ,34 13,29 19,42 ,11 16,24 23,53	R _{K,F} R _{W,Rk,A} V _{W,Rk} m/m kN/m kN/m ,43 5,80 8,79 11,94 ,09 8,04 12,01 19,33 ,15 10,41 15,38 28,37 ,34 13,29 19,42 40,86 ,11 16,24 23,53 55,05	10 mm 40 mm	10 mm 40 mm	10 mm 40 mm	RK,F R _{w,Rk,A} V _{w,Rk} M° _{Rk,B} M _{c,Rk,B} M° _{Rk,B} M	10 mm 40 mm	RK,F R _{w,Rk,A} V _{w,Rk} M° _{Rk,B} M°	RK,F R _{w,Rk,A} V _{w,Rk} M ^o _{Rk,B} M _{c,Rk,B} M ^o _{Rk,B} M _{c,Rk,B} M ^o _{Rk,B} M _{c,Rk,B} M ^o _{Rk,B} R ^o	10 mm 40 mm	Real Part Real	RK,F R _{w,Rk,A} V _{w,Rk} M° _{Rk,B} M _{c,Rk,B} M° _{Rk,B} M° _{Rk,B} M° _{Rk,B} M° _{Rk,B} M° _{Rk,B} R° _{Rk,B} R	Real Part Real

Reststützmomente 8)

	l _{a,i}	e = 10 m	im	l _{a,E}	_B = 60 m	ım	l _{a,t}	= 160 m	ım	Reststützmomente M _{R.Rk}
I _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										$M_{RRK} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{RR}$
										M _{R,Rk} = max M _{R,Rk} für L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-		Ve	erbindung	g in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	12,55	11,94	-	15,43	-	-	11,94	5,97	-	7,72	-	-	5,97
0,88	16,91	19,33	-	20,09	-	-	19,33	9,66	-	10,04	-	-	9,66
1,00	20,17	28,37	-	24,15	-	-	28,37	14,18	-	12,07	-	-	14,18
1,13	23,46	40,86	-	28,34	-	-	40,86	20,43	-	14,17	-	-	20,43
1,25	26,50	55,05	-	32,11	-	-	55,05	27,53	-	16,05	-	-	27,53
1,50	31,96	94,22	-	39,46	-	-	94,22	47,11	-	19,73	-	-	47,11


SAB 200R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f., =

350 N/mm²

Anlage 2.11.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

iter FREISTAAT Bearbeiter:

5350GI

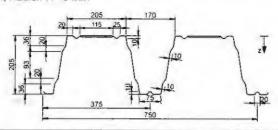
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ıng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I* en	I _{eff}	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	4/m	cm²/m	СГ	n	cm²/m	cr	n		m
0,75	0,120	772	798	13,72	7,65	8,36	4,66	8,57	9,50	9,40	11,75
0,88	0,141	901	945	16,23	7,65	8,36	6,17	8,49	9,53	11,12	13,90
1,00	0,160	1019	1087	18,55	7,65	8,35	7,65	8,41	9,46	12,71	15,85
1,13	0,181	1211	1233	21,06	7,65	8,35	9,40	8,33	9,39	14,43	18,00
1,25	0,200	1389	1369	23,38	7,65	8,35	11,04	8,26	9,32	16,02	20,00
1,50	0,240	1676	1651	28,20	7,65	8,35	15,19	8,13	9,16	19,33	24,15

Schubfeldwerte

		onazustona	dar Cabra	abataualiak	thoit 17)		G	renzzus	tand der	Tragfähi	igkeit ¹⁸⁾	
	G	enzzustant	d der Gebrau	icristaugiici	ikeit "						_asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T 16)	L _R ¹⁶⁾	T _{RK,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	, P'CK	11	1 2	** 1	,, 2	T _{Rk,g} 16)	TR	Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m ² /kN	10-4 - 1/kN	10-⁴ ·m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbindi	ung in jedem	Untergurt								
0,75	0,803	0,326	200,90	4,667	2,625	21,18	8,00	9,50	0,433	2,28	7	
0,88	1,223	0,275	131,95	4,667	2,625	27,25	8,00	15,73	0,471	2,94	,	1
1,00	1,707	0,241	94,50	4,667	2,625	33,28	8,00	23,48	0,503	3,59	/	
1,13	2,345	0,212	68,80	4,667	2,625	40,26	8,00	34,37	0,536	4,34		1
1,25	3,045	0,191	52,99	4,667	2,625	47,08	8,00	47,02	0,565	5,08		/
1,50	4,870	0,158	33,13	4,667	2,625	62,38	8,00	82,60	0,621	6,73	/	1
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gschei	be in jed	em Unte	ergurt ²⁰⁾		<u> </u>
0,75	0,738	0,326	151,77	4,667	1,313	21,18	8,00	9,50	0,875	4,93		
0,88	1,124	0,275	99,69	4,667	1,313	27,25	8,00	15,73	0,875	6,35	1	
1,00	1,570	0,241	71,39	4,667	1,313	33,28	8,00	23,48	0,875	7,75	/	,
1,13	2,156	0,212	51,97	4,667	1,313	40,26	8,00	34,37	0,875	9,38	1	/
1,25	2,800	0,191	40,03	4,667	1,313	47,08	8,00	47,02	0,875	10,97	1	/
1,50	4,477	0,158	25,03	4,667	1,313	62,38	8,00	82,60	0,875	14,54		

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 200R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f_{y,k} =

350 N/mm²

Anlage 2.11.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 eiter: FREISTAAT Bearbeiter:

\$360GD

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

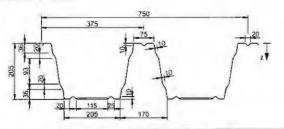
Nenn-	Feldmo-		Endaufla	gerkraft ⁶	5)	Elast	tisch aufr	nehmbar	e Schnitt	tgrößen a	an Zwisc	henaufla	gern 1) 2)	4) 5) 7)
blech- dicke	ment			goman		Quer-			Qua	dratisch	e Intera	ktion		
dicke			,			kraft		Stützm	omente		Zw	ischenau	ıflagerkr	äfte
	t _N M _{c,Rk,F}	l _{a,A1} = 40 mm	I _{a.A2} = 90 mm	i _{a,A1} = 40 mm	I _{s.A2} = 90 mm		I _{aB} = 6	0 mm	I _{a,B} = 26	00 mm	I _{a,8} = 6	0 mm	I _{a,B} = 20	00 mm
t _N	M _{c,Rk,F}	R _{T,v}	v,Rk,A	R _{G,v}	v,Rk,A	V _{w,Rk}	M ⁰ Rk,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	Rº Rk,B	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m			l/m		kN/m			n/m			kN	/m	,
0,75	19,72	7,99		7,99	7		13,39	8,95	24,57	12,47	17,73	14,54	21,94	19,18
0,88	25,27	11,50		11,50			19,13	13,09	30,46	17,35	25,85	21,12	30,47	26,20
1,00	30,39	14,71		14,71			24,43	16,91	35,90	21,86	33,34	27,18	38,35	32,68
1,13	34,28	19,92		19,92		n.m.	30,36	22,12	45,14	29,01	43,63	35,19	49,96	42,33
1,25	37,88	24,55		24,55			35,84	26,92	53,67	35,61	53,13	42,59	60,68	51,23
1,50	45,70	29,61		29,61	У		43,25	32,49	64,76	42,97	64,11	51,39	73,21	61,82

Reststützmomente 8)

l _{a,t}	= 60 mm		l _{a,E}	= 200 mm		Reststütz	zmomente M _{R,Rk}
min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	-	
m	m	kNm/m	m	m	kNm/m		
15,33	16,70	3,17	14,03	15,41	3,47	$M_{R,Rk} = 0$	für L≤min L
14,72	16,10	4,28	13,18	14,57	4,82		
14,15	15,54	5,30	12,39	13,80	6,06	M - L-	min L . max M
12,79	14,20	6,77	11,14	12,57	7,80	max L	min L · max M _{R,Rk}
11,54	12,96	8,13	9,98	11,44	9,39		
11,54	12,96	9,80	9,98	11,44	11,34	$M_{R,Rk} = max M$	_{R,k} für L≥ max L
	min L m 15,33 14,72 14,15 12,79 11,54	min L max L m m 15,33 16,70 14,72 16,10 14,15 15,54 12,79 14,20 11,54 12,96	m m kNm/m 15,33 16,70 3,17 14,72 16,10 4,28 14,15 15,54 5,30 12,79 14,20 6,77 11,54 12,96 8,13	min L max L max M _{R,Rk} min L m m kNm/m m 15,33 16,70 3,17 14,03 14,72 16,10 4,28 13,18 14,15 15,54 5,30 12,39 12,79 14,20 6,77 11,14 11,54 12,96 8,13 9,98	min L max L max M _{R,Rk} min L max L m m kNm/m m m 15,33 16,70 3,17 14,03 15,41 14,72 16,10 4,28 13,18 14,57 14,15 15,54 5,30 12,39 13,80 12,79 14,20 6,77 11,14 12,57 11,54 12,96 8,13 9,98 11,44	min L max L max M _{R,Rk} min L max L max M _{R,Rk} m m kNm/m m m kNm/m 15,33 16,70 3,17 14,03 15,41 3,47 14,72 16,10 4,28 13,18 14,57 4,82 14,15 15,54 5,30 12,39 13,80 6,06 12,79 14,20 6,77 11,14 12,57 7,80 11,54 12,96 8,13 9,98 11,44 9,39	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

	Feldmo-	Ve	rbindung	g in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		МЛ	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	19,41	20,30	1	19,07	- 1	- 1	20,30	10,15	-	9,54		-	10,15
0,88	24,36	32,51	-	24,86	_	-	32,51	16,26	-	12,43	-	1-	16,26
1,00	28,52	47,26	-	29,54	-	-	47,26	23,63	-	14,77	-	-	23,63
1,13	33,12	67,08	- 1	34,74	-	-	67,08	33,54	=	17,37		-	33,54
1,25	37,15	89,54	-	39,65	-	-	89,54	44,77	_	19,83	_	_	44,77
1,50	45,59	150,77		50,24	- }	-	150,77	75,38	-	25,12	•	-	75,38


SAB 200R/750

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Anlage 2.11.3 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T24-028 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 20.06/2024 iter: FREISTAAT Bearbeiter:

\$350GD

Nennstreckgrenze des Stahlkernes f, =

350 N/mm²

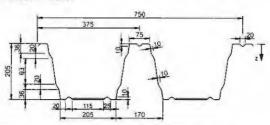
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt 12)	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	I- eff	Ag	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	Lgr
mm	kN/m²	cm	4/m	cm²/m cm cm		cm²/m	CI	n		m	
0,75	0,120	798	772	13,72	7,65	12,14	4,66	8,57	11,00	9,40	11,75
0,88	0,141	945	901	16,23	7,65	12,14	6,17	8,49	10,97	11,12	13,90
1,00	0,160	1087	1019	18,55	7,65	12,15	7,65	8,41	11,04	12,71	15,85
1,13	0,181	1233	1211	21,06	7,65	12,15	9,40	8,33	11,11	14,43	18,00
1,25	0,200	1369	1389	23,38	7,65	12,15	11,04	8,26	11,18	16,02	20,00
1,50	0,240	1651	1676	28,20	7,65	12,15	15.19	8,13	11,34	19,33	24,15

Schubfeldwerte

	C.	onzzueten.	der Gebrau	ما المار معامل	skait 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	enzzusiani	i dei Gebiad	cristaugiici	IKEIL						asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, ¹⁵⁾	K*, 15)	T 16)	L ₈ 16)	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	131	1 2	* 1	1 2	T _{Rk,g} 16)	™R	· Rk,I	3		130 mm	280 mn
mm	kN/m	10⁴·m/kN	10 ⁻⁴ · m ² /kN	10-4-1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	•	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	0,804	0,326	227,24	4,667	2,625	21,18	8,00	9,50	0,229	3,54	1	
0,88	1,224	0,275	149,26	4,667	2,625	27,25	8,00	15,73	0,249	4,56		. 7
1,00	1,709	0,241	106,90	4,667	2,625	33,28	8,00	23,48	0,266	5,57		/
1,13	2,348	0,212	77,82	4,667	2,625	40,26	8,00	34,37	0,284	6,74		
1,25	3,049	0,191	59,93	4,667	2,625	47,08	8,00	47,02	0,299	7,88	/	1
1,50	4,876	0,158	37,48	4,667	2,625	62,38	8,00	82,60	0,329	10,44		7
Sonderb	efestigur	ng: Verbind	ung mit 2 Scl	hrauben od	er verstärkte	r Unterle	egschei	be in jed	lem Unte	ergurt ²⁰⁾		V
0,75	3,015	0,326	13,599	4,667	1,313	21,18	8,00	9,50	1,325	11,57	1	
0,88	4,590	0,275	8,932	4,667	1,313	27,25	8,00	15,73	1,325	14,89	,	
1,00	6,409	0,241	6,397	4,667	1,313	33,28	8,00	23,48	1,325	18,19	/	
1,13	8,804	0,212	4,657	4,667	1,313	40,26	8,00	34,37	1,325	22,01	,	
1,25	11,43	0,191	3,587	4,667	1,313	47,08	8,00	47,02	1,325	25,74		
1,50	18,28	0,158	2,243	4,667	1,313	62,38	8,00	82,60	1,325	34,12		

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 200R/750

Negativlage

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f = 350 N/mm²

Anlage 2.11.4 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T24-028 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 20.06.2024 Bearbeiter:

> REISTAAT SACHSEN 5350GD

Leiter:

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-					Elastis	ch aufr	nehmb	are So	hnittgr	ößen an	Zwische	nauflage	ern ^{1) 2) 4)}	5) 7)	
blech-	ment	End	lauf-	Quer-						Line	are Inte	eraktion				
dicke		lager	kraft ⁶⁾	kraft		5	Stützm	oment	е			Zw	ischena	uflagerkr	äfte	
		= 40 mm	= 90 mm		I _{a,B} = 1	10 mm	1 _{aB} = 6	60 mm	I _{a,B} = 2	00 mm	_{a,8} = 1	0 mm	I _{a 8} = 6	60 mm	l _{a,e} = 20	00 mm
t _N	M _{c,Rk,F}	R _w	,Rk,A	V _{w,Rk}	M ^o Rk,B	M _{c,Rk,B}	M ^o _{Rk,B}	M _{c,Rk,B}	M ⁰ Rk,8	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m			kNr	n/m					kN	l/m		
0,75	19,41	1	7,94		23,84	19,07	23,84	19,07	23,84	19,07	9,74	7,79	17,01	13,61	27,15	21,72
0,88	24,36	1	10,94		31,08	24,86	31,08	24,86	31,08	24,86	13,69	10,95	23,49	18,79	37,16	29,73
1,00	28,52	,	14,15	0.00	36,93	29,54	36,93	29,54	36,93	29,54	17,98	14,38	30,41	24,33	47,77	38,21
1,13	33,12	7	18,13	n.m.	43,42	34,74	43,42	34,74	43,42	34,74	23,37	18,70	39,00	31,20	60,81	48,65
1,25	37,15	1	22,31		49,56	39,65	49,56	39,65	49,56	39,65	29,09	23,27	47,99	38,39	74,38	59,50
1,50	45,59	/	32,69		62,80	50,24	62,80	50,24	62,80	50,24	43,50	34,80	70,32	56,26	107,75	86,20

Reststützmomente 8)

	l _{a,}	_e = 10 m	m	l _{a,t}	= 60 m	m	l _{a,l}	_B = 200 m	ım	Reststützmomente M _{R,Rk}
T _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rx}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,R}$
										M _{R,Rk} = max M _{R,k} für L≥max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-	Feldmo-	Ve	erbindung	g in jeden	n anlieg	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		M/\	/- Intera	ktion		Endauf- lagerkraft		MΛ	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,8}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	19,07	20,30	-	19,41	-	-	20,30	10,15	-	9,70	-	-	10,15
0,88	24,86	32,51	-	24,36	-	-	32,51	16,26	-	12,18	-	-	16,26
1,00	29,54	47,26	-	28,52	-	-	47,26	23,63	-	14,26	-	-	23,63
1,13	34,74	67,08	-	33,12	-	-	67,08	33,54	-	16,56	-	-	33,54
1,25	39,65	89,54	-	37,15	-	-	89,54	44,77	-	18,57		_	44,77
1,50	50,24	150,77	-	45,59	_	-	150,77	75,38	-	22,79	-	-	75,38

SAB 200R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Positivlage

Maße in mm, Radien R= 6 mm

Anlage 2.12.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

S350GD

Nennstreckgrenze des Stahlkernes f_{v k} = 350 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ıng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt 12)	Einfeld- träger	Mehrfeld- träger
t _N	g	I ⁺ eff	l- _{eff}	Ag	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	4/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,107	679	691	12,38	7,47	8,06	4,16	7,76	8,24	9,20	11,50
0,88	0,126	803	818	14,64	7,47	8,06	5,38	7,76	8,17	12,25	15,30
1,00	0,143	917	934	16,73	7,47	8,06	6,54	7,71	8,04	14,10	17,60
1,13	0,161	1041	1061	18,99	7,47	8,06	7,83	7,67	7,97	15,85	19,80
1,25	0,179	1156	1177	21,08	7,47	8,06	9,04	7,64	7,92	17,30	21,60
1,50	0,214	1396	1420	25,43	7,47	8,06	11,76	7,59	7,84	20,25	25,30

Schubfeldwerte

	G	onzzueton/	d der Gebrau	ichetoualiek	koit 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	G	enzzustani	dei Gebiau	iciistaugiici	INCIL						asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	11	1 2	'` 1	2	T _{Rk,g} 16)	-R	* Rk,I	3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10-4 · m ² /kN	10-4 - 1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	0,82	0,298	190,041	4,167	2,940	19,34	8,00	8,69	0,399	2,20	1	
0,88	1,24	0,252	124,823	4,167	2,940	24,88	8,00	14,39	0,434	2,83		X
1,00	1,74	0,220	89,396	4,167	2,940	30,40	8,00	21,48	0,464	3,46		1
1,13	2,38	0,194	65,077	4,167	2,940	36,77	8,00	31,45	0,494	4,19		
1,25	3,09	0,175	50,122	4,167	2,940	43,00	8,00	43,02	0,520	4,90		7
1,50	4,95	0,145	31,341	4,167	2,940	56,98	8,00	75,57	0,572	6,49		
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	ier verstärkte	r Unterle	egschei	be in jed	lem Unte	ergurt ²⁰⁾	<u>/</u>	
0,75	0,76	0,298	138,488	4,167	1,470	19,34	8,00	8,69	0,796	4,98	1	
0,88	1,15	0,252	90,962	4,167	1,470	24,88	8,00	14,39	0,796	6,40	/	
1,00	1,61	0,220	65,145	4,167	1,470	30,40	8,00	21,48	0,796	7,82	,/	
1,13	2,21	0,194	47,423	4,167	1,470	36,77	8,00	31,45	0,796	9,46		
1,25	2,87	0,175	36,525	4,167	1,470	43,00	8,00	43,02	0,796	11,07	, /	/
1,50	4,59	0,145	22,839	4,167	1,470	56,98	8,00	75,57	0,796	14,67	/	07

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".

SAB 200R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Positivlage

Maße in mm, Radien R= 6 mm

Nennstreckgrenze des Stahlkernes f_{y,k} =

350 N/mm²

Anlage 2.12.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08.2025

Leiter: Bearbeiter: SACHSEN CAN SACHS CAN SACHS CAN SACHSEN CAN SACHS CAN SACH

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

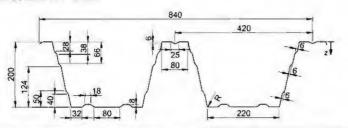
Nenn-	Feldmo-				E	Elastis	ch aufr	nehmb	are Sc	hnittgr	ßen an	Zwische	nauflage	ern 1) 2) 4) :	5) 7)	
blech-	ment		lauf- kraft ⁶⁾	Quer-						Line	eare Inte	eraktion				
dicke		lagen	(Tail "	kraft	-	5	Stützm	oment	е			Zw	ischena	uflagerkra	äfte	
		= 40 mm	_{a2} = 90 mm		= 1	0 mm	l _{a 8} = 1	00 mm	I _{e,B} = 2	00 mm	_{a,B} = 1	0 mm	I _{a,B} = 1	00 mm	I _{a B} = 2	00 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	Mº RK,B	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	/m	kN/m			kNr	n/m					k٨	l/m		
0,75	15,32	5,24	7,02		19,64	15,71	19,64	15,71	19,64	15,71	8,64	6,91	18,26	14,61	24,09	19,27
0,88	20,36	7,16	9,52		25,29	20,23	25,29	20,23	25,29	20,23	11,98	9,58	24,77	19,81	32,52	26,01
1,00	24,63	9,16	12,12	4.5.	30,11	24,09	30,11	24,09	30,11	24,09	15,50	12,40	31,50	25,20	41,19	32,95
1,13	29,14	11,57	15,23	n.m.	35,38	28,30	35,38	28,30	35,38	28,30	19,80	15,84	39,55	31,64	51,51	41,21
1,25	33,36	14,02	18,36		40,20	32,16	40,20	32,16	40,20	32,16	24,19	19,35	47,65	38,12	61,86	49,49
1,50	43,05	19,77	25,67		49,38	39,51	49,38	39,51	49,38	39,51	34,67	27,74	66,57	53,25	85,89	68,71

Reststützmomente 8)

	l _{a,l}	= 10 m	m	l _{a,E}	= 100 m	m	l _{a,E}	=200 m	m	R	eststützm	omente M _{R,Rk}
ζ _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}			
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m			
										M _{R,Rk} =	0	für L≤min L
										M _{R Rk} =		min L min L für L≥max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

Nenn-		Ve	erbindung	j in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	15,71	15,78		15,32	4	-	15,78	7,89	-	7,66	-	-	7,89
0,88	20,23	25,28	-	20,36	16	-	25,28	12,64		10,18	-1	-	12,64
1,00	24,09	36,69	-	24,63	-	-	36,69	18,34	-	12,32		- 1	18,34
1,13	28,30	52,32	-	29,14	-	-)	52,32	26,16	-	14,57		5	26,16
1,25	32,16	69,99	-	33,36	- 1	-	69,99	35,00	-	16,68			35,00
1,50	39,51	118,33	-	43,05	-	_	118,33	59,17	-	21,52	_	_	59,17


SAB 200R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm. Radien R= 6 mm

Leipzig, den 05.08.2025 Bearbeiter:

Anlage 2.12.3 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122

Landesdirektion Sachsen

Landesstelle für Bautechnik

Nennstreckgrenze des Stahlkernes f =

350 N/mm²

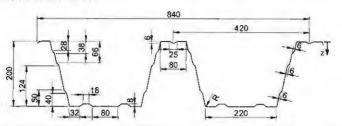
Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ıng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten 13)
blech- dicke a)				nicht redu:	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	(†	l'eff	A _g	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	Lgr
mm	kN/m²	cm	4/m	cm²/m	Cr	n	cm²/m	cr	n		m
0,75	0,107	691	679	12,38	7,47	11,94	4,16	7,76	11,76	9,40	11,75
0,88	0,126	818	803	14,64	7.47	11,94	5,38	7,76	11,83	12,20	15,25
1,00	0,143	934	917	16,73	7,47	11,94	6,54	7,71	11,96	13,85	17,30
1,13	0,161	1061	1041	18,99	7,47	11,94	7,83	7,67	12,03	15,45	19,30
1,25	0,179	1177	1156	21,08	7,47	11,94	9,04	7,64	12,08	16,65	20,80
1,50	0,214	1420	1396	25,43	7,47	11,94	11,76	7,59	12,16	18,75	23,40

Schubfeldwerte

	G.	onzzuetono	der Gebrau	chetavaliek	skait 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
	GI	enzzustant	i dei Gebiau	cristaugilci	IKER .					ı	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15)	T 16)	L, 16)	T _{Rk,i}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	b,Ck	' '1	2	1	1 2	T _{Rk,g} 16)	L _R	Rk,i	3		130 mm	280 mn
mm	kN/m	10 ⁻⁴ ·m/kN	10-4 · m ² /kN	10⁴ ·1/kN	10 ⁻⁴ · m ² /kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	0,79	0,298	226,865	4,167	2,940	19,34	8,00	8,69	0,211	3,37		
0,88	1,20	0,252	149,010	4,167	2,940	24,88	8,00	14,39	0,230	4,33	,	1
1,00	1,67	0,220	106,717	4,167	2,940	30,40	8,00	21,48	0,246	5,30	/	
1,13	2,29	0,194	77,687	4,167	2,940	36,77	8,00	31,45	0,262	6,41	/	
1,25	2,98	0,175	59,834	4,167	2,940	43,00	8,00	43,02	0,276	7,49		1
1,50	4,77	0,145	37,414	4,167	2,940	56,98	8,00	75,57	0,303	9,93	1	
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	egschei	be in jed	lem Unte	ergurt ²⁰⁾	<u>/</u>	V
0,75	3,29	0,298	11,593	4,167	1,470	19,34	8,00	8,69	1,149	11,72		
0,88	5,00	0,252	7,615	4,167	1,470	24,88	8,00	14,39	1,149	15,08	,	
1,00	6,99	0,220	5,454	4,167	1,470	30,40	8,00	21,48	1,149	18,43		3
1,13	9,60	0,194	3,970	4,167	1,470	36,77	8,00	31,45	1,149	22,30		/
1,25	12,46	0,175	3,058	4,167	1,470	43,00	8,00	43,02	1,149	26,08		
1,50	19,92	0,145	1,912	4,167	1,470	56,98	8,00	75,57	1,149	34,56		

a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


SAB 200R/840

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in

Negativlage

Maße in mm, Radien R= 6 mm

Anlage 2.12.4 zum Prüfbescheid
ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.08,2025

Bearbeiter:

SACHSEN (

KEISTAAT

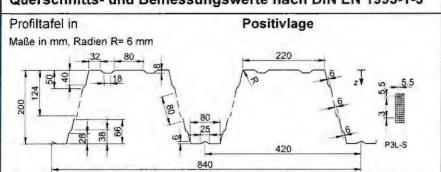
Leiter:

Nennstreckgrenze des Stahlkernes f_{vk} = 350 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				E	Elastis	ch aufr	nehmb	are Sc	hnittgrö	ßen an	Zwische	nauflage	ern 1) 2) 4)	5) 7)	
blech-	ment	2-000	auf- craft ⁶⁾	Quer-						Line	are Inte	eraktion				
dicke		lagen	trait	kraft		5	Stützım	omente	е			Zw	ischenau	uflagerkra	äfte	
		_{a1} = 40 mm	l _{a2} = 90 mm		I _{a,B} = 1	0 mm	= 1	00 mm	_{a 8} = 2	00 mm	I _{a,B} = 1	0 mm	1 _{a,B} = 16	00 mm	I _{a,B} = 20	00 mm
t _N	M _{c,Rk,F}	R _w	Rk,A	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M° Rk,B	M _{c,Rk,B}	M° RK,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		/m	kN/m			kNr	n/m					kN	l/m		
0,75	15,71	5,24	7,02		19,15	15,32	19,15	15,32	19,15	15,32	8,64	6,91	18,26	14,61	24,09	19,27
0,88	20,23	7,16	9,52		25,45	20,36	25,45	20,36	25,45	20,36	11,98	9,58	24,77	19,81	32,52	26,01
1,00	24,09	9,16	12,12		30,79	24,63	30,79	24,63	30,79	24,63	15,50	12,40	31,50	25,20	41,19	32,95
1,13	28,30	11,57	15,23	n.m.	36,42	29,14	36,42	29,14	36,42	29,14	19,80	15,84	39,55	31,64	51,51	41,21
1,25	32,16	14,02	18,36		41,69	33,36	41,69	33,36	41,69	33,36	24,19	19,35	47,65	38,12	61,86	49,49
1,50	39,51	19,77	25,67		53,81	43,05	53,81	43.05	53.81	43,05	34.67	27,74	66.57	53,25	85,89	68,71

Reststützmomente 8)


	l _{a,l}	_B = 10 m	m	l _{a,I}	_B = 100 m	m	l _{a,f}	_B = 200 m	m	Reststützmomente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m	
										M _{R,Rk} = 0 für L≤min L
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R,Rk}$ $M_{R,Rk} = \max M_{R,k} \text{für } L \ge \max L$

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)

	Feldmo-	Ve	erbindung	j in jeden	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MΛ	/- Intera	ktion		Endauf- lagerkraft		MA	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	15,32	15,78	-	15,71	-	-	15,78	7,89	1	7,85	-	-	7,89
0,88	20,36	25,28	-	20,23	-	-	25,28	12,64	-	10,12	-	-	12,64
1,00	24,63	36,69	-	24,09	-	-	36,69	18,34	_	12,04	L	_	18,34
1,13	29,14	52,32	-	28,30	-	-	52,32	26,16	-	14,15	-	-	26,16
1,25	33,36	69,99	4	32,16	-	-	69,99	35,00	-	16,08	-	-	35,00
1,50	43,05	118,33	-	39,51	-		118,33	59,17	_	19,75	-	_	59,17

SAB 200R/840 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 2.13.1 zum Prüfbescheid
ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Rearbeiter:

5350GD

Nennstreckgrenze des Stahlkernes f = 350 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ing ¹¹⁾		Norr	nalkraftbe	anspruchu	ng		Grenzstü	tzweiten ^{b)}
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	I+	i- _{eff}	Ag	ì,	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	4/m	cm²/m	cr	n	cm²/m	cr	n		m
0,75	0,102	679	679	10,77	7,94	7,87	3,70	8,17	8,11		-
0,88	0,119	803	803	12,74	7,94	7,87	4,79	8,16	8,03	9,60	9,60
1,00	0,136	917	917	14,56	7,94	7,87	5,82	8,12	7,88	12,80	12,80
1,13	0,153	1041	1041	16,53	7,94	7,87	6,95	8,08	7,80	14,52	14,52
1,25	0,169	1156	1156	18,35	7,94	7,87	8,03	8,05	7,74	16,10	16,10
1,50	0,203	1394	1394	22,14	7,93	7,87	10,42	7,99	7,65	16,88	16,88

Schubfeldwerte

	Gr	onara intoné	d der Gebrau	chetavalich	akait 17)		G	renzzus	tand der	Tragfähi	gkeit ¹⁸⁾	
	G	enzzusiani	a del Gebiad	ichstaughei	IKCI					L	.asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K ₂ 14) 15)	K*, 15)	K*, 15)	T 16)	16)	T _{Rk,i}	K ₃ 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	" b,Ck	14	2	1, 1	2	T _{Rk,g} 16)	¬R	" Rk,I	' '3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10 ⁻⁴ ·m²/kN	10⁴·1/kN	10-⁴ ·m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN
Normalb	efestigur	ng: Verbind	ung in jedem	Untergurt								
0,75	0,679	0,298	228,344	4,167	2,940	19,07	8,00	7,98	0,399	1,83		
0,88	1,034	0,252	149,981	4,167	2,940	24,54	8,00	12,78	0,434	2,36		
1,00	1,444	0,220	107,413	4,167	2,940	29,98	8,00	18,55	0,464	2,88	1	V
1,13	1,984	0,194	78,193	4,167	2,940	36,26	8,00	26,48	0,494	3,49		
1,25	2,576	0,175	60,224	4,167	2,940	42,41	8,00	35,47	0,520	4,08		/
1,50	4,119	0,145	37,658	4,167	2,940	56,19	8,00	60,15	0,572	5,41	/	
Sonderb	efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	er verstärkte	r Unterle	gschei	be in jed	lem Unte	ergurt ²⁰⁾		<u> </u>
0,75	0,630	0,298	166,400	4,167	1,470	19,07	8,00	7,98	0,796	4,14	/	
0,88	0,959	0,252	109,295	4,167	1,470	24,54	8,00	12,78	0,796	5,33		/
1,00	1,338	0,220	78,275	4,167	1,470	29,98	8,00	18,55	0,796	6,51		
1,13	1,839	0,194	56,981	4,167	1,470	36,26	8,00	26,48	0,796	7,88		
1,25	2,387	0,175	43,887	4,167	1,470	42,41	8,00	35,47	0,796	9,21	1	1
1,50	3,818	0,145	27,442	4,167	1,470	56,19	8,00	60,15	0,796	12,21	1	

- ^{a)} Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)". (Klasse 2 nach DIN EN 508-1:2014)
- Das Betreten der Profitafeln ist nur nach der Befestigung auf der Unterkonstruktion zulässig. Weitere Fußnoten siehe Beiblatt 1/2 bzw. 2/2

SAB 200R/840 P3L-S

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Maße in mm, Radien R= 6 mm Positivlage Maße in mm, Radien R= 6 mm 220 P3L-S

Anlage 2.13.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik Leipzig, den 05.08.2025

eiter: FREISTAAT Bearbeiter:

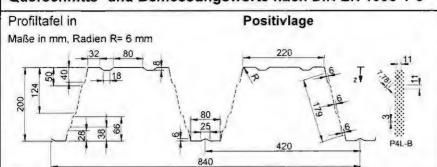
S350GD

Nennstreckgrenze des Stahlkernes f_{v.k} = 350 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feld-		Endaufla	gerkraft ^t	5)	Elas	tisch aufi	nehmbar	e Schnit	tgrößen a	an Zwisc	henaufla	gern ^{1) 2)}	4) 5) 7)
blech-	moment		Lindudiid	gontran		Quer-			Qua	dratisch	e Intera	ktion		
dicke						kraft		Stützm	omente		Zw	ischenau	ıflagerkr	äfte
		_{a,A1} = 40 mm	I _{a,A2} = 90 mm	t _{a,A1} = 40 mm	= = = = = = = = = =		I _{a B} = 6	60 mm	I _{a,B} = 2	00 mm	l _{a,8} = 6	60 mm	I _{a B} = 2	00 mm
t _N	M _{c,Rk,F}	R _{T,v}	v,Rk,A	R _{G,v}	v,Rk,A	V _{w,Rk} M ⁰ _{Rk,B} kN/m	M _{c,Rk,B}	M° RK,B	M _{c,Rk,B}	R° RK,B	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	
mm	kNm/m			l/m				kNr	n/m				l/m	
0,75	14,77	6,22	7,05	4,24	5,16		12,48	6,44	12,35	7,92	11,33	11,13	16,28	15,04
0,88	19,15	9,29	10,33	6,51	7,91		15,68	9,52	16,59	11,54	17,54	16,41	23,97	21,57
1,00	23,20	12,12	13,36	8,60	10,44		18,62	12,36	20,52	14,88	23,27	21,28	31,07	27,60
1,13	28,83	16,64	18,36	12,11	14,87	n.m.	23,40	16,97	26,53	20,68	33,51	29,01	45,67	37,72
1,25	34,03	20,81	22,97	15,36	18,96		27,81	21,23	32,09	26,03	42,97	36,14	59,15	47,05
1,50	41,06	25,11	27,71	18,53	22,88		33,56	25,62	38,72	31,41	51,85	43,61	71,37	56,78

Reststützmomente 8)


	l _{a,i}	_B = 60 mm		l _{a.t}	= 200 mm		Reststüt	zmomente M _{R.Rk}
t,	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}		
mm	m	m	kNm/m	m	m	kNm/m		
0,75	13,04	13,93	1,85	9,06	9,99	2,68	$M_{R,Rk} = 0$	für L≤min L
0,88	11,93	12,83	2,71	8,44	9,37	3,82		
1,00	10,91	11,81	3,49	7,86	8,81	4,87	M _ L-	min L · max M _{R,Rk}
1,13	9,99	10,91	4,86	7,43	8,38	6,50	$M_{R,Rk} = \frac{L}{\text{max L}}$	- min L
1,25	9,15	10,07	6,12	7,02	7,99	8,00		
1,50	9,15	10,07	7,39	7,02	7,99	9,65	$M_{R,Rk} = \max M$	l _{e,k} für L≥max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn-	Feldmo-	Ve	rbindung	j in jeden	n anliege	enden Gu	irt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		MA	/- Intera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ^o _{Rk,B}	M _{c,Rk,B}	$R^0_{Rk,B}$	R _{w,Rk,B}	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	14,69	7,98	-	14,82	-	-	7,98	3,99	-	7,41	-	- 1	3,99
0,88	19,07	12,78	-	19,65	-	-	12,78	6,39	-	9,82	-	-	6,39
1,00	22,92	18,55	-	24,03	_	-	18,55	9,28	-	12,01	-	- 1	9,28
1,13	27,05	26,48	4	28,55	-	-	26,48	13,24	-	14,27	-	-	13,24
1,25	30,89	35,47	-	32,76		-	35,47	17,74	-	16,38	=	-	17,74
1,50	38,01	60,15	-	42,43	-	-	60,15	30,07	_	21,21	-	-	30,07

SAB 200R/840 P4L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.

Anlage 2.14.1 zum Prüfbescheid

Prüfbescheid Nr. T25-122
Landesdirektion Sachsen
Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

TAAT Bearbeiter

\$350GD

Nennstreckgrenze des Stahlkernes f., = 350 N/mm²

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegu	ng ¹¹⁾		Norr	nalkraftbe	anspruchu	ing		Grenzstü	tzweiten ^{b)}
blech- dicke a)				nicht redu	zierter Qu	erschnitt	wirksam	er Querso	hnitt ¹²⁾	Einfeld- träger	Mehrfeld- träger
t _N	g	J+ eff	- eff	Ag	ig	Zg	A _{eff}	i _{ett}	Z _{eff}	Lgr	L _{gr}
mm	kN/m²	cm ⁴	'/m	cm²/m	cr	n	cm²/m	cr	'n		m
0,75	0,101	614	614	10,15	7,78	7,62	3,52	8,06	7,91	-	-
0,88	0,119	726	726	12,01	7,78	7,62	4,56	8,05	7,83	9,60	9,60
1,00	0,135	830	830	13,72	7,78	7,62	5,54	8,00	7,68	12,80	12,80
1,13	0,152	942	942	15,58	7,78	7,62	6,62	7,95	7,59	14,52	14,52
1,25	0,168	1046	1046	17,30	7,78	7,62	7,64	7,92	7,53	16,10	16,10
1,50	0,202	1262	1262	20,87	7,78	7,62	9,91	7,85	7,42	16,88	16,88

Schubfeldwerte

	C.	onzzuetone	d der Gebrau	obetovaliek	kait 17)		G	renzzus	tand der	Tragfähi	gkeit 18)	
4	G	Crizzustani	dei Gebiau	Cristaugiici	INCIL					L	asteinleitu	ing
t _N	T _{b,Ck}	K, 14) 15)	K, 14) 15)	K*, 15)	K*, 15}	T 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} 21)	für a ≥
	' b,Ck	1,1	2	'` 1	1 2	T _{Rk,g} 16)	¯ _R	'Rk,I	. 3		130 mm	280 mm
mm	kN/m	10⁴·m/kN	10-4 -m²/kN	10-4 - 1/kN	10 ⁻⁴ ·m ² /kN	kN/m	m	kN/m		kN/m	kN	kN
Normalb	efestigur	g: Verbind	ung in jedem	Untergurt								
0,75	0,620	0,298	250,264	4,167	2,940	17,69	8,00	8,64	0,399	1,67		
0,88	0,944	0,252	164,379	4,167	2,940	22,76	8,00	13,95	0,434	2,15	/	
1,00	1,318	0,220	117,724	4,167	2,940	27,81	8,00	20,30	0,464	2,63		1
1,13	1,810	0,194	85,699	4,167	2,940	33,64	8,00	29,02	0,494	3,18	1	/
1,25	2,350	0,175	66,006	4,167	2,940	39,35	8,00	38,97	0,520	3,72	1	
1,50	3,758	0,145	41,273	4,167	2,940	52,15	8,00	66,11	0,572	4,93	1	/
Sonderb	↓ efestigur	ng: Verbind	ung mit 2 Sc	hrauben od	 ler verstärkte	r Unterle	egschei	be in jed	lem Unte	ergurt ²⁰⁾	<i>r</i>	
0,75	0,574	0,298	182,374	4,167	1,470	17,69	8,00	8,64	0,796	3,78	1	
0,88	0,875	0,252	119,787	4,167	1,470	22,76	8,00	13,95	0,796	4,86	/	/
1,00	1,221	0,220	85,789	4,167	1,470	27,81	8,00	20,30	0,796	5,94		,
1,13	1,677	0,194	62,451	4,167	1,470	33,64	8,00	29,02	0,796	7,19		/
1,25	2,178	0,175	48,100	4,167	1,470	39,35	8,00	38,97	0,796	8,40		
1,50	3,483	0,145	30,076	4,167	1,470	52,15	8,00	66,11	0,796	11,14	1	

- a) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)". (Klasse 2 nach DIN EN 508-1:2014)
- b) Das Betreten der Profitafeln ist nur nach der Befestigung auf der Unterkonstruktion zulässig. Weitere Fußnoten siehe Beiblatt 1/2 bzw. 2/2

SAB 200R/840 P4L-B

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Maße in mm, Radien R= 6 mm Positivlage Maße in mm, Radien R= 6 mm 220 11 220 P4L-B

Anlage 2.14.2 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Leiter: Bearbeiter:

S350GD

Nennstreckgrenze des Stahlkernes f_{v.k} = 350 N/mm²

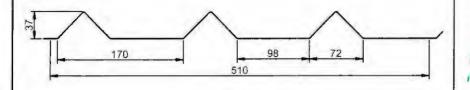
Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feld-	,	Endaufla	gerkraft ⁶	5)	Elasi	tisch aufi	nehmbar	e Schnitt	tgrößen a	an Zwisc	henaufla	gern 1) 2)	4) 5) 7)
blech-	moment			goman		Quer-			Qua	dratisch	e Intera	ktion		
dicke						kraft		Stützm	omente		Zw	rischenau	uflagerkr	äfte
		_{a,A1} = 40 mm	l _{a.A2} = 90 mm	I _{a,A1} = 40 mm	I _{a,A2} = 90 mm		I _{a,a} = 6	0 mm	I _{a,B} = 2	00 mm	l _{a,B} = 6	60 mm	1 _{a,B} = 2	00 mm
t _N	M _{c,Rk,F}	R _{T,v}	v,Rk,A	$R_{g,v}$	v,Rk,A	V _{w,Rk} kN/m	Mº Rk,8	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	Rº Rk,B	R _{w,Rk,B}
mm	kNm/m			l/m				kNr	n/m				l/m	
0,75	14,23	6,22	7,05	4,24	5,16		12,48	6,44	12,35	7,92	11,33	11,13	16,28	15,04
0,88	18,16	9,29	10,33	6,51	7,91		15,68	9,52	16,59	11,54	17,54	16,41	23,97	21,57
1,00	21,77	12,12	13,36	8,60	10,44		18,62	12,36	20,52	14,88	23,27	21,28	31,07	27,60
1,13	26,38	16,64	18,36	12,11	14,87	n.m.	23,40	16,97	26,53	20,68	33,51	29,01	45,67	37,72
1,25	30,63	20,81	22,97	15,36	18,96		27,81	21,23	32,09	26,03	42,97	36,14	59,15	47,05
1,50	36,96	25,11	27,71	18,53	22,88		33,56	25,62	38,72	31,41	51,85	43,61	71,37	56,78

Reststützmomente 8)

	l _{a,t}	= 60 mm		 a,E	= 200 mm		Reststützmome	ente M _{R,Rk}
t _N	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}		
mm	m	m	kNm/m	m	m	kNm/m		
0,75	15,89	16,88	1,65	13,22	14,35	2,21	$M_{RRk} = 0$ f	ür L≤min L
0,88	13,82	14,82	2,55	11,76	12,92	3,30		
1,00	11,90	12,92	3,38	10,42	11,60	4,30	M _ L - min L	· max M _{R,Rk}
1,13	10,76	11,79	4,67	9,38	10,58	5,97	$M_{R,Rk} = \frac{L - min L}{max L - min}$	1 L
1,25	9,70	10,75	5,85	8,42	9,64	7,50		
1,50	9,70	10,75	7,06	8,42	9,64	9,05	$M_{R,Rk} = \max M_{R,k}$ f	ür L≥ max L

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 2)


Nenn-	Feldmo-	Ve	erbindung	g in jeder	n anliege	enden Gu	ırt	Ver	bindung	in jedem	2. anlie	genden G	urt
blech- dicke	ment	Endauf- lagerkraft		M/\	/- Intera	ktion		Endauf- lagerkraft		MA	/- Intera	ktion	
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$\boldsymbol{V}_{\boldsymbol{w}_i \boldsymbol{R} \boldsymbol{k}}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m
0,75	13,50	8,64	-	13,39	-	-	8,64	4,32	-	6,69	-	-	4,32
0,88	17,43	13,95	-	18,03	-	-	13,95	6,97	- 1	9,02	-	_	6,97
1,00	20,81	20,30	-	22,01	-	-	20,30	10,15	-	11,01	-	-	10,15
1,13	24,39	29,02	-	26,01	-	-	29,02	14,51	(2)	13,01	-	-	14,51
1,25	27,47	38,97	-	29,76	-	-	38,97	19,48	-	14,88	-	_	19,48
1,50	33,86	66,11	-	38,20	-	-	66,11	33,06	-	19,10	-	-	33,06

SAB Pyramid 37/510

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Profiltafel in Positivlage

Maße in mm, Radien R= 2 mm

Anlage 3.1 zum Prüfbescheid

ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T25-122 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.08.2025 Bearbeiter:

Nennstreckgrenze des Stahlkernes f 280 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 7)

Nenn-	Feldmo-	Endaufla	agerkraft		Elastisch	aufnehm	bare Sch	nittgrößen	an Zwiscl	henauflage	ern 1) 2) 3) 4) 5	5)
blech-	ment		6)	Quer-				Lineare	Interaktio	n		
dicke 9)				kraft		Stützmo	omente		Z	Zwischena	uflagerkräft	е
		b _A = 10 mm	b _A = 40 mm		(_{a B} = 40	0 mm	I _{a.8} = 6	0 mm	I _{a B} =	40 mm	I _{4 B} =	60 mm
t _N	M _{c,Rk,F}	R	v,Rk	V _{w,Rk}	M ⁰ _{Rk,B} M _{c,Rk,B}		M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m		l/m	kN/m		kNn	n/m			kN	l/m	
0,75	1,241	6,64	10,05		1,374	1,099	1,374	1,099	25,14	20,11	28,98	23,18
0,88	1,468	9,20	13,74		1,675	1,340	1,675	1,340	34,35	27,48	39,46	31,57
1,00	1,677	11,90	17,59	n.m.	1,957	1,566	1,957	1,566	43,97	35,17	50,35	40,28
1,25	2,114	18,58	26,91		2,553	2,042	2,553	2,042	67,28	53,82	76,64	61,31
1,50	2,551	26,63	37,96		3,150	2,520	3,150	2,520	94,89	75,91	107,62	86,10

Nenn- blech- dicke		Endauf- lagerkraft ⁸⁾	Zwischenauflager ^{1) 2) 3) 8)} M/V- Interaktion, Bef. in jedem anliegenden Gurt					Eigenlast		Quer- schnitts-	
									Trägheitsmomente		
			Stützmoment		Auflagerkraft		Querkraft				fläche
			M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I+ eff	I- eff	Ag
mm	kNm/m	kN/m	kNn	n/m	kN	/m	kN/m	kN/m²	cm⁴/m	cm4/m	cm²/m
0,75	1,099	45,40	-	1,241		-	45,40	0,073	11,81	9,14	8,37
0,88	1,340	57,67	-	1,468	-	-	57,67	0,086	13,97	11,33	9,90
1,00	1,566	65,90	_	1,677	- 4	-	65,90	0,098	15,96	13,43	11,31
1,25	2,042	83,04	-	2,114		-	83,04	0,122	20,12	17,99	14,26
1,50	2,520	100,19	_	2.551	_	_	100,19	0,146	24,27	22,74	17,20

1) M/R- Interaktion

$$\frac{M_{Ed}}{M_{Rk,B}^0/\gamma_M} + \frac{F_{Ed}}{R_{Rk,B}^0/\gamma_M} \le 1$$

2) M/V- Interaktion

$$\frac{M_{\text{Ed}}}{M_{\text{Rk},B}^{0}/\gamma_{M}} + \frac{F_{\text{Ed}}}{R_{\text{Rk},B}^{0}/\gamma_{M}} \leq 1 \qquad \frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{M}} \leq 0.5 \\ \vdots \\ \frac{M_{\text{Ed}}}{M_{\text{c,Rk},B}/\gamma_{M}} \leq 1 \qquad \frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{M}} > 0.5 \\ \vdots \\ \frac{M_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{M}} + \left(\frac{2 \cdot V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{M}} - 1\right)^{2} \leq 1 \\ \frac{1}{N_{\text{c,Rk},B}/\gamma_{M}} \leq 1 \qquad \frac{N_{\text{Ed}}}{N_{\text{c,Rk},B}/\gamma_{M}} \leq 1 \\ \frac{N_{\text{e,Rk}}}{N_{\text{c,Rk},B}/\gamma_{M}} \leq 1 \\ \frac{N_{\text{e,Rk}}}{N_{\text{c,Rk}}} \leq 1 \\ \frac{N_{\text{e,Rk}}}{N_{\text{c,Rk$$

- 3) Sind keine Werte für $\mathrm{M^o_{Rk,B}}$ und $\mathrm{R^o_{Rk,B}}$ angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V keine Werte angegeben, entfällt dieser Nachweis.
- 5) Für kleinere Zwischenauflagerbreiten b_a als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_s < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 6) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 7) Die Partialsicherheitsbeiwerte sind mit $\gamma_{M} = 1,1$ bzw. $\gamma_{M,ser} = 1,0$ anzusetzen.
- Bei Verbindung in jedem 2. Gurt müssen die angegebenen Werte halbiert werden.
- Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)". Längsstoßverbindung e ≤ 500 mm.

Beiblatt 1/2

Erläuterungen zu den Querschnitts- und Tragfähigkeitswerten (DIN EN 1993-1-3)

Interaktionsbeziehung für M und V (elastisch-elastisch)

$$F\ddot{u}r \qquad \frac{V_{\text{Ed}}}{V_{\text{w.Rk}}/\gamma_{\text{M0}}} \; \leq \; 0.5 \qquad \quad \frac{M_{\text{Ed}}}{M_{\text{c.Rk,B}}/\gamma_{\text{M0}}} \; \leq \; 1$$

$$\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_{IMO}} \le 1$$

 $\frac{V_{Ed}}{V_{W,R}/Y_{M0}} > 0.5$ gilt Gleichung 6.27 (EN 1993-1-3), die im Sinne der Sicherheit vereinfacht werden kann:

$$\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_{MO}} + \left(2 \cdot \frac{V_{Ed}}{V_{w,Rk}/\gamma_{MO}} - 1\right)^2 \le 1$$

Interaktionsbeziehung für M und R (elastisch-elastisch)

Sind keine Werte für R^o_{RkB} angegeben, ist kein Interaktionsnachweis zu führen.

Lineare Interaktionsbeziehung für M und F:

$$\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_{M0}} \leq 1 \text{ und } \frac{F_{Ed}}{R_{w,Rk,B}/\gamma_{M1}} \leq 1 \qquad \frac{M_{Ed}}{M_{Rk,B}^{0}/\gamma_{M0}} + \frac{F_{Ed}}{R_{Rk,B}^{0}/\gamma_{M1}} \leq 1$$

$$\frac{M_{Ed}}{M_{Rk,B}^{0}/\gamma_{M0}} + \frac{F_{Ed}}{R_{Rk,B}^{0}/\gamma_{M1}} \le 1$$

Quadratische Interaktionsbeziehung für M und F:

$$\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_{M0}} \le 1 \text{ und } \frac{F_{Ed}}{R_{w,Rk,B}/\gamma_{M1}} \le$$

$$\frac{M_{Ed}}{M_{c,\,Rk,\,B}/\gamma_{M0}} \, \leq \, 1 \ \, und \, \, \frac{F_{Ed}}{R_{w,Rk\,,\,B}/\gamma_{M1}} \, \leq \, 1 \qquad \qquad \frac{M_{Ed}}{M_{Rk,\,B}^0/\gamma_{M0}} \, + \, \left(\frac{F_{Ed}}{R_{Rk\,,B}^0/\gamma_{M1}}\right)^2 \, \leq \, 1$$

- Werden quer zur Spannrichtung und rechtwinklig zur Profilebene Linienlasten in das Trapezprofil eingeleitet, so ist der Nachweis der Tragfähigkeit aus der umgekehrten Profillage als Interaktionsnachweis (vgl. Fußnote 2) durchzuführen.
- Für kleinere Zwischenauflagerlängen las angegeben, müssen die aufnehmbaren Tragfähigkeitswerte linear im entsprechenden Verhältnis reduziert werden. Für laß < 10 mm, z.B. bei Rohren, darf maximal der Wert für I_{a,B} = 10 mm eingesetzt werden
- Bei Auflagerlängen, die zwischen den aufgeführten Auflagerlängen liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Der Profilüberstand für die wirksame Auflagerlänge I_{a.A1} ist mit c ≥ 40 mm einzuhalten. Die Auflagerlänge I_{a.A2} entspricht der wirksamen Auflagerlänge einschließlich des Profilüberstandes c. Die hier angegebenen Auflagerkräfte Rwaka sind experimentell bestätigte oder von diesen abgeleitete Werte.
- Die Werte gelten nur für $\beta_v \le 0.2$. Für $\beta_v \ge 0.3$ ist der Nachweis mit $l_{a,B} = 10$ mm zu führen.

$$\beta_{V} = \frac{|V_{Ed,1}| - |V_{Ed,2}|}{|V_{Ed,1}| + |V_{Ed,2}|}$$

 $\beta_{V} = \frac{\mid V_{\text{Ed},1} \mid - \mid V_{\text{Ed},2} \mid}{\mid V_{\text{Ed},1} \mid + \mid V_{\text{Ed},2} \mid} \qquad \text{Dabei sind } \mid V_{\text{Ed},1} \mid \text{ und } \mid V_{\text{Ed},2} \mid \text{ die Beträge der Querkräfte auf jeder Seite der örtlicher Lasteinleitung oder der Auflagerreaktion. Es gilt } \mid V_{\text{Ed},1} \mid \geq \mid V_{\text{Ed},2} \mid$

Tragfähigkeitsnachweis (plastisch-plastisch) für andrückende Einwirkungen:

Stützmomente sind auf die sich aus den jeweils angrenzenden Feldlängen ergebenden Reststützmomente MRRK/YMG

Für das damit unter Bemessungslasten entstehende maximale Feldmoment muss gelten:

$$M_{Ed} \leq M_{c,Rk,F}/\gamma_{M0}$$

Außerdem ist für die im Endfeld entstehende Endauflagerkraft folgende Bedingung einzuhalten:

$$F_{Ed} \leq R_{w,Rk,A}/\gamma_{M1}$$

Für den Nachweis der Gebrauchstauglichkeit ist am elastischen System nachzuweisen, dass bei gleichzeitigem Auftreten von Stützmoment und Auflagerkraft an einer Zwischenstütze die 0,9-fache Beanspruchbarkeit nicht überschritten wird (vgl. Fußnote 2)

Sind keine Werte für Reststützmomente angegeben, ist beim Tragfähigkeitsnachweis M_{R,Rk}/γ_{M0} = 0 zu setzen.

- Bei Verbindung in jedem 2. Gurt müssen die angegebenen Werte halbiert werden.
- Kalottenlänge ≥ 50 mm.
- 11) Wirksame Trägheitsmomente für die Lastrichtung nach unten (+) bzw. oben (-).
- Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = f_{y,k}$.
- Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.

Beiblatt 2.1/2

Erläuterungen zu den Schubfeldwerten (DIN EN 1993-1-3)

Der Grenzwert der Beanspruchbarkeit zur Einhaltung des maximalen Gleitwinkels 1/750 ergibt sich aus

 $T_{Cd} = \frac{G_S}{750} \cdot \frac{1}{Y_{M, ser}} = \frac{1}{750} \cdot \frac{1}{\{K_1 + K_2/L_S\}} \cdot \frac{1}{Y_{M, ser}}$ mit L_S = Gesamtlänge des Schubfeldes in merket 10

Die Schubsteifigkeit S in kN zur Berechnung der Gesamtverformung des Schubfeldes ergibt sich vereinfacht zu:

$$S = \frac{L_{S}}{\left[\left(K_{1} + K_{1}^{*} + e_{L}\right) + \left(K_{2} + K_{2}^{*}\right)/L_{S}\right]}$$

mit e_L = Abstand der Verbindungselemente in den Längsstößen in m.

Zur genaueren Berechnung siehe Fußnote 23). Falls keine weiteren Angaben gemacht werden, gelten die angegebenen K*- Werte für Unterkonstruktionen aus Stahl mit s_s = s_p = 0,35 mm / kN. Sind entsprechende Werte für s, bzw. s, belegt, können ggf. geringere K*- Werte angesetzt werden.

Der globale Beulschubfluss ist an die vorhandenen Stützweiten anzupassen:

 $T'_{Rk,n} = T_{Rk,n}/L_{R}/L_{Si}^2$ mit $L_{Si} =$ maximale Einzelstützweite in m. Für Einfeldträger kann $T_{Rk,n}$ verdoppelt werden.

Im Grenzzustand der Gebrauchstauglichkeit ist nachzuweisen:

 $T_{\text{Ed}} \, \leq \, T_{\text{Cd}} \quad \text{und} \quad T_{\text{Ed}} \, \leq T_{\text{b.Ck}}/\gamma_{\text{M.ser}}$

Der Nachweis von T_{b,Ck} ist nur bei bituminös verklebten Dachaufbauten erforderlich.

Im Grenzzustand der Tragfähigkeit ist nachzuweisen:

$$T_{Ed} \leq T_{Rk,I}/\gamma_{M1}$$
 und $T_{Ed} \leq T'_{Rk,g}/\gamma_{M1}$

Die Bemessungswerte der Quer- und Auflagerkräfte sind um F_{Ed,S} = ± K₃ · T_{Ed} zu vergrößern.

Sonderausführungsarten der Befestigung:

Eine Sonderausführung der Befestigung ist gegeben, wenn jede Rippe mit je einem Befestigungselement unmittelbar neben jedem Steg des Trapezprofils (siehe Bild 1) befestigt wird. Alternativ darf eine runde oder rechteckige Unterlegscheibe (siehe Bild 2), die unter das mittig eingebrachte Befestigungselement anzuordnen ist, verwendet werden. Die Unterlegscheibe muss den Untergurt in seiner gesamten ebenen Breite überdecken.

Für die Scheibendicke d gilt:

$$d \geq 2.7 + t_{cor} + \sqrt[3]{\frac{1}{c_u}} \geq 2.0 \, mm$$

 $d \geq 2.7 + t_{cor} + \sqrt[3]{\frac{1}{c_u}} \geq 2.0 \, \text{mm} \qquad \begin{array}{c} \text{mit} \quad I = \text{Untergurtbreite des Trapezprofils} \\ c_u = \text{Breite der Unterlegscheibe in Trapezprofillängsrichtung oder} \\ \end{array}$ Durchmesser der Unterlegscheibe

Bild 1

Bild 2

- Einzellasten F_{LRk} in kN je Rippe für die Einleitung in Trapezprofile in Spannrichtung ohne Lasteinleitungsträger.
 - Bei exzentrischer Lasteinleitung, z.B. aus der Weiterleitung der Kräfte aus dem Festpunkt der Außenschale zweischaliger Dächer in das Schubfeld, ist zusätzlich nachzuweisen:

 $T_{Ed} \leq T_{t,Rk}/\gamma_{M0}$

Erläuterungen zu den Schubfeld-Beiwerten

Wert		Einheit
K,	Konstante zur Gleitwinkelberechnung	m/kN
K ₂	Konstante zur Gleitwinkelberechnung	m²/kN
K_1^*	Konstante zur Gesamtverformungsberechnung	1/kN
K_2^*	Konstante zur Gesamtverformungsberechnung	m²/kN
K₃	Faktor für die Endauflager- und Querkraft	-
L_{R}	Referenzlänge (Einzelstützweite) für T _{Rk,g}	m
L_{s_i}	Einzelstützweite	m
$T_{Rk, g}$	globaler Beulschubfluss bei L _R	kN/m
$T_{Rk,\sharp}$	Kleinstwert aus dem lokalen Beulschubfluss und dem Spannungsnachweis	kN/m
$T_{b,Ck}$	Grenzschubfluss für die Relativverformung h/20, h = Profilhöhe	kN/m
$T_{t,R\boldsymbol{k}}$	Grenzschubfluss zur Begrenzung der Querbiegespannung	kN/m

Beiblatt 2.2/2

Erläuterungen zu den Schubfeldwerten (DIN EN 1993-1-3)

Alternativ zu Fußnote 15 kann die Schubsteifigkeit S in kN nach ECCS berechnet werden:

$$S = \frac{L_S}{K_1 \cdot \alpha_2 + K_1^* \cdot e_L + \frac{K_2 \cdot \alpha_1 \cdot \alpha_4 + K_2^* \cdot \alpha_3}{L_S}}$$

mit L_s = Gesamtlänge des Schubfeldes in m

SACHSEN

Anzahl der Felder →	1	2	3	4	5	6	7	8
Anzahl der Auflager →	2	3	4	5	6	7	8	9
α1	1,00	1,00	0,85	0,70	0,60	0,60	0,60	0,60
α ₂	1,00	1,00	0,75	0,67	0,55	0,50	0,44	0,40
α ₃	1,00	1,00	0,90	0,80	0,71	0,64	0,58	0,53

α₄ = 1,0 für Schubfelder ohne Querstoß

 $\alpha_4 = 1.3 + 0.3 \cdot n_b$ $n_b = \text{Anzahl der Querstöße im Schubfeld}$